Câu hỏi:

24/05/2022 1,150 Lưu

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x + 1} \right){\left( {x - 2} \right)^3},{\rm{ }}\forall {\rm{x}} \in \mathbb{R}\). Hỏi \(f\left( x \right)\) có bao nhiêu điểm cực đại?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Các nghiệm đơn là \(x =  - 1\)\(x = 2\).

Đạo hàm đổi dấu từ dương sang âm tại x =  - 1 nên có một cực đại x =  - 1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Xét Dx;y;zAD=BCx1=5y=2z3=6D4;2;9

Câu 2

Lời giải

Đáp án A

Xét Mx;y;zAM=x;y1;z+2AB=3;2;3AM=3ABx=3.3y1=3.2z+2=3.3M9;5;7

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP