Câu hỏi:

24/05/2022 624 Lưu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên và có bảng biến thiên như sau.

Cho hàm số y=f(x)  có đạo hàm liên tục trên và có bảng biến thiên như sau.   (ảnh 1)

Hàm số \(y = f\left( {{x^2} - 2{\rm{x}}} \right)\) nghịch biến trên khoảng nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Chọn \(f'\left( x \right) = x\left( {x + 1} \right)\)

Khi đó \(g\left( x \right) = f\left( {{x^2} - 2{\rm{x}}} \right) \Rightarrow g'\left( x \right) = \left( {2{\rm{x}} - 2} \right)f'\left( {{x^2} - 2{\rm{x}}} \right) = \left( {2{\rm{x}} - 2} \right)\left( {{x^2} - 2{\rm{x}}} \right)\left( {{x^2} - 2{\rm{x}} + 1} \right)\)

Ta có bảng xét dấu

Cho hàm số y=f(x)  có đạo hàm liên tục trên và có bảng biến thiên như sau.   (ảnh 2)

Do đó hàm số \(g\left( x \right)\) nghịch biến trên khoảng \(\left( {1;2} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Xét Dx;y;zAD=BCx1=5y=2z3=6D4;2;9

Câu 2

Lời giải

Đáp án A

Xét Mx;y;zAM=x;y1;z+2AB=3;2;3AM=3ABx=3.3y1=3.2z+2=3.3M9;5;7

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP