Câu hỏi:
24/05/2022 144Cho hình chóp S.ABC có mặt đáy là tam giác đều cạnh bằng 2, hình chiếu của S lên mặt phẳng \(\left( {ABC} \right)\) là điểm H nằm trong tam giác ABC sao cho \(\widehat {AHB} = 150^\circ ;\widehat {BHC} = 120^\circ ;\widehat {CHA} = 90^\circ \). Biết tổng diện tích mặt cầu ngoại tiếp các hình chóp S.HAB; S.HBC; S.HCA bằng \(\frac{{124\pi }}{3}\). Tính chiều cao SH của hình chóp.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Gọi \({r_1},{r_2},{r_3}\) lần lượt là bán kính đường tròn ngoại tiếp \(\Delta HAB,\Delta HBC,\Delta HCA\).
Theo định lí Sin, ta có \(\frac{{AB}}{{\sin \widehat {AHB}}} = 2{{\rm{r}}_1} \Rightarrow {r_1} = \frac{2}{{2.\sin 150^\circ }} = 2\); tương tự \( \Rightarrow \left\{ \begin{array}{l}{r_2} = \frac{{2\sqrt 3 }}{3}\\{r_3} = 1\end{array} \right.\).
Gọi \({R_1},{R_2},{R_3}\) lần lượt là bán kính mặt cầu ngoại tiếp các hình chóp S.HAB, S.HBC, S.HCA.
Đặt và
Suy ra
Vậy thể tích khối chóp S.ABC là \(V = \frac{1}{3}SH.{S_{\Delta ABC}} = \frac{1}{3}.\frac{{4\sqrt 3 }}{3}.\frac{{{2^2}\sqrt 3 }}{4} = \frac{4}{3}\).
Chú ý: “Cho hình chóp S.ABC có SA vuông góc với đáy và \({R_{\Delta ABC}}\) là bán kính đường tròn ngoại tiếp tam giác ABC \( \to R = \sqrt {R_{\Delta ABC}^2 + \frac{{S{A^2}}}{4}} \) là bán kính mặt cầu ngoại tiếp khối chóp S.ABC”.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;0;3} \right),B\left( {2;3; - 4} \right),C\left( { - 3;1;2} \right)\). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Câu 3:
Trong không gian với hệ tộa độ Oxyz, cho hai điểm \(A\left( {0;1; - 2} \right)\) và \(B\left( {3; - 1;1} \right)\). Tìm tọa độ của điểm M sao cho
Câu 4:
Cho hàm số \[y = f\left( x \right)\] có đạo hàm, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(2f'\left( {{x^2}} \right) = 9{\rm{x}}\sqrt {f\left( {{x^2}} \right)} \) với mọi \(x \in \left( {0; + \infty } \right)\). Biết \(f\left( {\frac{2}{3}} \right) = \frac{2}{3}\), tính giá trị \(f\left( {\frac{1}{3}} \right)\).
Câu 5:
Số nghiệm của phương trình \({\log _2}x = 3 - 2{\log _2}\left( {x - 4} \right)\) là
Câu 6:
Cho hàm số \(f\left( x \right) = \ln \left( {{x^4} + 1} \right)\). Đạo hàm \(f'\left( 1 \right)\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) và thỏa mãn , \(3f\left( 1 \right) - f\left( 0 \right) = 12\). Tính \(I = \int\limits_0^1 {f\left( x \right)d{\rm{x}}} \).
về câu hỏi!