Câu hỏi:

24/05/2022 158

Cho hình chóp S.ABC có mặt đáy là tam giác đều cạnh bằng 2, hình chiếu của S lên mặt phẳng \(\left( {ABC} \right)\) là điểm H nằm trong tam giác ABC sao cho \(\widehat {AHB} = 150^\circ ;\widehat {BHC} = 120^\circ ;\widehat {CHA} = 90^\circ \). Biết tổng diện tích mặt cầu ngoại tiếp các hình chóp S.HAB; S.HBC; S.HCA bằng \(\frac{{124\pi }}{3}\). Tính chiều cao SH của hình chóp.

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi \({r_1},{r_2},{r_3}\) lần lượt là bán kính đường tròn ngoại tiếp \(\Delta HAB,\Delta HBC,\Delta HCA\).

Theo định lí Sin, ta có \(\frac{{AB}}{{\sin \widehat {AHB}}} = 2{{\rm{r}}_1} \Rightarrow {r_1} = \frac{2}{{2.\sin 150^\circ }} = 2\); tương tự \( \Rightarrow \left\{ \begin{array}{l}{r_2} = \frac{{2\sqrt 3 }}{3}\\{r_3} = 1\end{array} \right.\).

Gọi \({R_1},{R_2},{R_3}\) lần lượt là bán kính mặt cầu ngoại tiếp các hình chóp S.HAB, S.HBC, S.HCA.

Đặt SH=2xR1=r12+SH24=x2+4;R2=x2+43R3=x2+1

Suy ra S=S1+S2+S3=4πR12+4πR22+4πR32=4π3x2+193=124π3x=233

Vậy thể tích khối chóp S.ABC\(V = \frac{1}{3}SH.{S_{\Delta ABC}} = \frac{1}{3}.\frac{{4\sqrt 3 }}{3}.\frac{{{2^2}\sqrt 3 }}{4} = \frac{4}{3}\).

Chú ý: “Cho hình chóp S.ABC có SA vuông góc với đáy và \({R_{\Delta ABC}}\) là bán kính đường tròn ngoại tiếp tam giác ABC \( \to R = \sqrt {R_{\Delta ABC}^2 + \frac{{S{A^2}}}{4}} \) là bán kính mặt cầu ngoại tiếp khối chóp S.ABC”.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;0;3} \right),B\left( {2;3; - 4} \right),C\left( { - 3;1;2} \right)\). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án » 24/05/2022 36,480

Câu 2:

Trong không gian với hệ tộa độ Oxyz, cho hai điểm \(A\left( {0;1; - 2} \right)\)\(B\left( {3; - 1;1} \right)\). Tìm tọa độ của điểm M sao cho AM=3AB

Xem đáp án » 24/05/2022 13,893

Câu 3:

Cho \02fxdx=302gxdx=7, khi đó 02fx+3gxdx bằng

Xem đáp án » 24/05/2022 10,369

Câu 4:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(2f'\left( {{x^2}} \right) = 9{\rm{x}}\sqrt {f\left( {{x^2}} \right)} \) với mọi \(x \in \left( {0; + \infty } \right)\). Biết \(f\left( {\frac{2}{3}} \right) = \frac{2}{3}\), tính giá trị \(f\left( {\frac{1}{3}} \right)\).

Xem đáp án » 24/05/2022 5,844

Câu 5:

Số nghiệm của phương trình \({\log _2}x = 3 - 2{\log _2}\left( {x - 4} \right)\)

Xem đáp án » 24/05/2022 5,500

Câu 6:

Cho hàm số \(f\left( x \right) = \ln \left( {{x^4} + 1} \right)\). Đạo hàm \(f'\left( 1 \right)\) bằng

Xem đáp án » 24/05/2022 4,754

Câu 7:

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) và thỏa mãn A=012x+1f'xdx=10, \(3f\left( 1 \right) - f\left( 0 \right) = 12\). Tính \(I = \int\limits_0^1 {f\left( x \right)d{\rm{x}}} \).

Xem đáp án » 24/05/2022 4,740

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store