Câu hỏi:

25/05/2022 917

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hifh chóp bằng nhau và bằng 2p. Tính khoảng cách d từ A đến mặt phẳng (SCD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2pi. Tính khoảng cách d từ A đến mặt phẳng (SCD). (ảnh 1)

Gọi O là tâm của đáy, suy ra SOABCD.

Ta có dA,SCD=2dO;SCD.   

Gọi J là trung điểm CD, suy ra OJCD.

Gọi K là hình chiếu của O trên SJ, suy ra

Khi đó dO;SCD=OK=SO.OJSO2+OJ2=a730.

Vậy dA,SCD=2OK=2a730.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Phương trình mặt phẳng đi qua điểm A1;2;3  có vectơ pháp tuyến n=2;1;3   là:

2x11y2+3z+3=02xy+3z+9=0.

Lời giải

Đáp án B.

TXĐ: D=\m.

Ta có:  y'=x22mx+m22m+1xm2.

Để hàm số đồng biến trên từng khoảng xác định thì: y'0,xD

x22mx+m22m+10,xm

a=1>0Δ'=2m+10m12.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP