Câu hỏi:

25/05/2022 1,656 Lưu

Tính diện tích hình phẳng giới hạn bởi y=x2; y=x24; y=8x.

A. 732ln2.
B. 32+2ln2.
C. 4ln2.
D. 53+43ln2.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C.

Các hoành độ giao điểm x2=2xx3=2x=23x2=8xx3=8x=2x24=2xx3=9x=2x24=8xx3=32x=243

Gọi S là diện tích cần xác định, ta có 

S=S1+S2

=232x22xdx+22438xx24dx=x332lnx232+8lnxx3122243=4ln2 (đvdt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Phương trình mặt phẳng đi qua điểm A1;2;3  có vectơ pháp tuyến n=2;1;3   là:

2x11y2+3z+3=02xy+3z+9=0.

Lời giải

Đáp án B.

TXĐ: D=\m.

Ta có:  y'=x22mx+m22m+1xm2.

Để hàm số đồng biến trên từng khoảng xác định thì: y'0,xD

x22mx+m22m+10,xm

a=1>0Δ'=2m+10m12.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hàm số đồng biến trên khoảng ;2.
B. Hàm số nghịch biến trên khoảng   ;2.      

C. Hàm số đồng biến trên khoảng  1;1.  

D. Hàm số nghịch biến trên khoảng 1;1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP