Câu hỏi:

25/05/2022 1,025

Có bao nhiêu giá trị nguyên thuộc đoạn \[\left[ {0;10} \right]\] của tham số m để phương trình \[{4^x} - m{.2^{x + 1}} + 4\left( {m - 1} \right) = 0\] có hai nghiệm thực dương phân biệt?

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Điều kiện: \[x \in \mathbb{R}\;\left( * \right)\]. Phương trình \[ \Leftrightarrow {\left( {{2^x}} \right)^2} - 2m{.2^x} + 4\left( {m - 1} \right) = 0\].

Đặt \[t = {2^x} > 0\], ta được \[{t^2} - 2mt + 4\left( {m - 1} \right) = 0\;\;\;\left( 1 \right)\].

Để ý \[\Delta ' = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\] nên \[\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}t = m - \left( {m - 2} \right) = 2\\t = m + \left( {m - 2} \right) = 2m - 2\end{array} \right.\].

Do đó \[\left[ \begin{array}{l}{2^x} = 2\\{2^x} = 2m - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\{2^x} = 2m - 2\end{array} \right.\].

Khi đó \[{2^x} = 2m - 2\] cần phải có nghiệm thực dương khác 1.

\[ \Leftrightarrow \left\{ \begin{array}{l}2m - 2 > {2^0}\\2m - 2 \ne {2^1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > \frac{3}{2}\\m \ne 2\end{array} \right.\].

\[m \in \mathbb{Z}\]\[m \in \left[ {0;10} \right] \Rightarrow m \in \left\{ {3;4;5;6;7;8;9;10} \right\}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, hình chiếu vuông góc của điểm \[M\left( {1;2; - 3} \right)\] trên trục Oz có tọa độ là

Xem đáp án » 25/05/2022 2,194

Câu 2:

Với a là số thực dương tùy ý, log28a  bằng

Xem đáp án » 25/05/2022 2,024

Câu 3:

Trong không gian Oxyz, cho điểm \[A\left( {2; - 2;1} \right)\] và đường thẳng d có phương trình \[\frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{{z - 3}}{{ - 1}}\]. Viết phương trình đường thẳng \[\Delta \] đi qua điểm A, vuông góc và cắt đường thẳng d.

Xem đáp án » 26/05/2022 1,757

Câu 4:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm của cạnh AB. Thể tích khối chóp S.ABC bằng \[\frac{{{a^3}\sqrt 3 }}{3}\]. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng:

Xem đáp án » 26/05/2022 1,591

Câu 5:

Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số \[y = \left| {\frac{{{x^2} + mx + m}}{{x + 1}}} \right|\] trên đoạn \[\left[ {1;2} \right]\] bằng 2. Số phần tử của S là:

Xem đáp án » 26/05/2022 1,503

Câu 6:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = 6x + \cos x\]

Xem đáp án » 26/05/2022 1,227

Câu 7:

Có bao nhiêu số nguyên m lớn hơn \[ - 10\] để hàm số \[f\left( x \right) = \frac{{{x^3}}}{3} + m{x^2} + 3x + 5m - 1\] nghịch biến trên khoảng \[\left( {1;3} \right)\]?

Xem đáp án » 26/05/2022 1,189

Bình luận


Bình luận