Câu hỏi:

25/05/2022 1,515 Lưu

Có bao nhiêu giá trị nguyên thuộc đoạn \[\left[ {0;10} \right]\] của tham số m để phương trình \[{4^x} - m{.2^{x + 1}} + 4\left( {m - 1} \right) = 0\] có hai nghiệm thực dương phân biệt?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Điều kiện: \[x \in \mathbb{R}\;\left( * \right)\]. Phương trình \[ \Leftrightarrow {\left( {{2^x}} \right)^2} - 2m{.2^x} + 4\left( {m - 1} \right) = 0\].

Đặt \[t = {2^x} > 0\], ta được \[{t^2} - 2mt + 4\left( {m - 1} \right) = 0\;\;\;\left( 1 \right)\].

Để ý \[\Delta ' = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\] nên \[\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}t = m - \left( {m - 2} \right) = 2\\t = m + \left( {m - 2} \right) = 2m - 2\end{array} \right.\].

Do đó \[\left[ \begin{array}{l}{2^x} = 2\\{2^x} = 2m - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\{2^x} = 2m - 2\end{array} \right.\].

Khi đó \[{2^x} = 2m - 2\] cần phải có nghiệm thực dương khác 1.

\[ \Leftrightarrow \left\{ \begin{array}{l}2m - 2 > {2^0}\\2m - 2 \ne {2^1}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > \frac{3}{2}\\m \ne 2\end{array} \right.\].

\[m \in \mathbb{Z}\]\[m \in \left[ {0;10} \right] \Rightarrow m \in \left\{ {3;4;5;6;7;8;9;10} \right\}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Điểm cần tìm là H với \[\left\{ \begin{array}{l}{x_H} = 0\\{y_H} = 0\\{z_H} = {z_M}\end{array} \right. \Rightarrow H\left( {0;0; - 3} \right)\].

Câu 2

Lời giải

Đáp án B

Ta có d:x=1+ty=1+t3tt

Giả sử \[\Delta \] đi qua A, vuông góc và cắt d tại \[M \Rightarrow M\left( {t + 1;t - 1;3 - t} \right)\].

Đường thẳng Δ nhận AM=t1;t+1;2t là một VTCP.

Đường thẳng d có một VTCP là u=1;1;1

Ta có ΔdAM.u=0t1+t+12t=0t=23AM=13;53;43

Đường thẳng \[\Delta \] nhận AM=13;53;43 là một VTCP nên nhận u'=1;5;4 là một VTCP.

Kết hợp với \[\Delta \] qua \[A\left( {2; - 2;1} \right) \Rightarrow \Delta :\frac{{x - 2}}{{ - 1}} = \frac{{y + 2}}{5} = \frac{{z - 1}}{4}\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP