Câu hỏi:

25/05/2022 610

Cho khối chóp tứ giác S.ABCD. Mặt phẳng đi qua trọng tâm các tam giác SAB, SAC, SAD chia khối chóp này thành hai phần có thể tích là \[{V_1}\]\[{V_2}\left( {{V_1} < {V_2}} \right)\]. Tính tỉ số \[\frac{{{V_1}}}{{{V_2}}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Cho khối chóp tứ giác S.ABCD. Mặt phẳng đi qua trọng tâm các tam giác SAB, SAC, SAD chia khối  (ảnh 1)

Gọi \[{G_1},{G_2},{G_3}\] lần lượt là trọng tâm các tam giác SAB, SAD, SAC.

Gọi I, J lần lượt là trung điểm của các cạnh AB, AC.

\[ \Rightarrow \frac{{S{G_1}}}{{SI}} = \frac{{S{G_3}}}{{SJ}}\left( { = \frac{2}{3}} \right) \Rightarrow {G_1}{G_3}//IJ \Rightarrow {G_1}{G_3}//\left( {ABC} \right)\].

Tương tự \[{G_2}{G_3}//\left( {ABC} \right) \Rightarrow \left( {{G_1}{G_2}{G_3}} \right)//\left( {ABCD} \right)\]

Qua \[{G_1}\] dựng đường song song với AB, cắt SA, SB lần lượt tại M, N.

Qua N dựng đường song song với BC, cắt SC tại P.

Qua P dựng đường song song với CD, cắt SD tại Q.

Thiết diện của hình chóp S.ABCD khi cắt bởi \[\left( {{G_1}{G_2}{G_3}} \right)\] là tứ giác MNPQ.

Ta có \[\frac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SB}}.\frac{{SP}}{{SC}} = \frac{2}{3}.\frac{2}{3}.\frac{2}{3} = \frac{8}{{27}} \Rightarrow {V_{S.MNP}} = \frac{8}{{27}}{V_{S.ABC}}\]

Tương tự \[{V_{S.MPQ}} = \frac{8}{{27}}{V_{S.ACD}} \Rightarrow {V_{S.MNPQ}} = {V_{S.MNP}} + {V_{S.MPQ}} = \frac{8}{{27}}{V_{S.ABCD}}\].

\[ \Rightarrow {V_{ABCD.MNPQ}} = {V_{S.ABCD}} - {V_{S.MNPQ}} = \frac{{19}}{{27}}{V_{S.ABCD}} \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{8}{{27}}{V_{S.ABCD}}}}{{\frac{{19}}{{27}}{V_{S.ABCD}}}} = \frac{8}{{19}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian Oxyz, hình chiếu vuông góc của điểm \[M\left( {1;2; - 3} \right)\] trên trục Oz có tọa độ là

Lời giải

Đáp án C

Điểm cần tìm là H với \[\left\{ \begin{array}{l}{x_H} = 0\\{y_H} = 0\\{z_H} = {z_M}\end{array} \right. \Rightarrow H\left( {0;0; - 3} \right)\].

Câu 2

Trong không gian Oxyz, cho điểm \[A\left( {2; - 2;1} \right)\] và đường thẳng d có phương trình \[\frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{{z - 3}}{{ - 1}}\]. Viết phương trình đường thẳng \[\Delta \] đi qua điểm A, vuông góc và cắt đường thẳng d.

Lời giải

Đáp án B

Ta có d:x=1+ty=1+t3tt

Giả sử \[\Delta \] đi qua A, vuông góc và cắt d tại \[M \Rightarrow M\left( {t + 1;t - 1;3 - t} \right)\].

Đường thẳng Δ nhận AM=t1;t+1;2t là một VTCP.

Đường thẳng d có một VTCP là u=1;1;1

Ta có ΔdAM.u=0t1+t+12t=0t=23AM=13;53;43

Đường thẳng \[\Delta \] nhận AM=13;53;43 là một VTCP nên nhận u'=1;5;4 là một VTCP.

Kết hợp với \[\Delta \] qua \[A\left( {2; - 2;1} \right) \Rightarrow \Delta :\frac{{x - 2}}{{ - 1}} = \frac{{y + 2}}{5} = \frac{{z - 1}}{4}\].

Câu 3

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm của cạnh AB. Thể tích khối chóp S.ABC bằng \[\frac{{{a^3}\sqrt 3 }}{3}\]. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Với a là số thực dương tùy ý, log28a  bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều. Cạnh \[AA' = a\sqrt 6 \] và khoảng cách từ điểm A đến mặt phẳng \[\left( {BCC'B'} \right)\] bằng \[a\sqrt 2 \]. Tính thể tích V của khối lăng trụ ABC.A’B’C’.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số \[y = f\left( x \right)\] có đồ thị \[\left( C \right)\] như hình vẽ. Diện tích phần hình phẳng tô đậm được tính theo công thức nào dưới đây?

Cho hàm số y=f(x)  có đồ thị  (C) như hình vẽ. Diện tích phần hình phẳng tô đậm được tính  (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = 6x + \cos x\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay