Trong không gian Oxyz, cho các điểm \[A\left( {1;2;3} \right),B\left( {2;1;0} \right),C\left( {4;3; - 2} \right),D\left( {3;4;1} \right)\] và \[E\left( {1;1; - 1} \right)\]. Có bao nhiêu mặt phẳng cách đều 5 điểm đã cho?
Quảng cáo
Trả lời:
Đáp án C
Ta có
Mà không thẳng hàng.
Nên tứ giác ABCD là hình bình hành.
Ta có
Mà
Ta có hình chóp E.ABCD với đáy ABCD là hình bình hành.

Các mặt phẳng cách đều 5 điểm đã cho là:
+ Mặt phẳng qua 4 trung điểm của 4 cạnh bên EA, EB, EC, ED.
+ Mặt phẳng qua 4 trung điểm lần lượt của ED, EC, AD, BC.
+ Mặt phẳng qua 4 trung điểm lần lượt của EC, EB, DC, AB.
+ Mặt phẳng qua 4 trung điểm lần lượt của EA, EB, AD, BC.
+ Mặt phẳng qua 4 trung điểm lần lượt của EA, ED, AB, DC.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Điểm cần tìm là H với \[\left\{ \begin{array}{l}{x_H} = 0\\{y_H} = 0\\{z_H} = {z_M}\end{array} \right. \Rightarrow H\left( {0;0; - 3} \right)\].
Lời giải
Đáp án B
Ta có
Giả sử \[\Delta \] đi qua A, vuông góc và cắt d tại \[M \Rightarrow M\left( {t + 1;t - 1;3 - t} \right)\].
Đường thẳng nhận là một VTCP.
Đường thẳng d có một VTCP là
Ta có
Đường thẳng \[\Delta \] nhận là một VTCP nên nhận là một VTCP.
Kết hợp với \[\Delta \] qua \[A\left( {2; - 2;1} \right) \Rightarrow \Delta :\frac{{x - 2}}{{ - 1}} = \frac{{y + 2}}{5} = \frac{{z - 1}}{4}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.