Câu hỏi:

26/05/2022 530

Cho hai số thực dương x, y thỏa mãn \[{\log _3}{\left[ {\left( {x + 1} \right)\left( {y + 1} \right)} \right]^{y + 1}} = 9 - \left( {x - 1} \right)\left( {y + 1} \right)\]. Giá trị nhỏ nhất của biểu thức \[P = x + 2y\] là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Ta có \[\begin{array}{l}{\log _3}{\left[ {\left( {x + 1} \right)\left( {y + 1} \right)} \right]^{y + 1}} = 9 - \left( {x - 1} \right)\left( {y + 1} \right)\\ \Leftrightarrow \left( {y + 1} \right)\left[ {{{\log }_3}\left( {x + 1} \right) + {{\log }_3}\left( {y + 1} \right)} \right] + \left( {x - 1} \right)\left( {y + 1} \right) = 9\\ \Leftrightarrow \left( {y + 1} \right)\left[ {{{\log }_3}\left( {x + 1} \right) + {{\log }_3}\left( {y + 1} \right) + x - 1} \right] = 9\\ \Leftrightarrow {\log _3}\left( {x + 1} \right) + x - 1 = \frac{9}{{y + 1}} - {\log _3}\left( {y + 1} \right)\\ \Leftrightarrow {\log _3}\left( {x + 1} \right) + x + 1 - 2 = \frac{9}{{y + 1}} - 2 + {\log _3}\frac{9}{{y + 1}}\end{array}\]

Xét hàm số \[f\left( t \right) = {\log _3}t + t - 2\], với \[t > 0\]\[f'\left( t \right) = \frac{1}{{t\ln 3}} + 1 > 0\] với mọi \[t > 0\].

Nên hàm số \[f\left( t \right)\] luôn đồng biến liên tục trên \[\left( {0; + \infty } \right) \Rightarrow x + 1 = \frac{9}{{y + 1}}\].

\[ \Rightarrow x = \frac{9}{{y + 1}} - 1 = \frac{{8 - y}}{{y + 1}}\], do \[x > 0 \Rightarrow y \in \left( {0;8} \right)\].

Do đóP=x+2y=8yy+1+2y=2y1+9y+1=2y+1+9y+133+62

Dấu “=” xảy ra y+1=92y=32x=272257

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, hình chiếu vuông góc của điểm \[M\left( {1;2; - 3} \right)\] trên trục Oz có tọa độ là

Xem đáp án » 25/05/2022 2,195

Câu 2:

Với a là số thực dương tùy ý, log28a  bằng

Xem đáp án » 25/05/2022 2,024

Câu 3:

Trong không gian Oxyz, cho điểm \[A\left( {2; - 2;1} \right)\] và đường thẳng d có phương trình \[\frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{{z - 3}}{{ - 1}}\]. Viết phương trình đường thẳng \[\Delta \] đi qua điểm A, vuông góc và cắt đường thẳng d.

Xem đáp án » 26/05/2022 1,758

Câu 4:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm của cạnh AB. Thể tích khối chóp S.ABC bằng \[\frac{{{a^3}\sqrt 3 }}{3}\]. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng:

Xem đáp án » 26/05/2022 1,591

Câu 5:

Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số \[y = \left| {\frac{{{x^2} + mx + m}}{{x + 1}}} \right|\] trên đoạn \[\left[ {1;2} \right]\] bằng 2. Số phần tử của S là:

Xem đáp án » 26/05/2022 1,503

Câu 6:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = 6x + \cos x\]

Xem đáp án » 26/05/2022 1,229

Câu 7:

Có bao nhiêu số nguyên m lớn hơn \[ - 10\] để hàm số \[f\left( x \right) = \frac{{{x^3}}}{3} + m{x^2} + 3x + 5m - 1\] nghịch biến trên khoảng \[\left( {1;3} \right)\]?

Xem đáp án » 26/05/2022 1,192

Bình luận


Bình luận