Câu hỏi:
05/01/2020 1,486Trong mặt phẳng (P) cho đường tròn (C) có đường kính AB = 2. Trên đường thẳng vuông góc với (P) tại điểm A, lấy điểm S sao cho SA = Xét điểm M thay đổi trên (C), mặt phẳng qua A vuông góc với SB, lần lượt cắt SB, SM tại H và K. Diện tích tam giác AHK đạt giá trị lớn nhất bằng
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Chọn A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lập phương ABCD.A'B'C'D' Góc giữa hai mặt phẳng (A'B'CD) và (ABC'D') bằng
Câu 2:
Cho hình chóp S.ABCD có đáy là hình thoi cạnh 2a , góc ABC = 60 0 , SA = và SA(ABCD). Tính góc giữa SA và mặt phẳng (SBD)
Câu 3:
Cho hình chóp S.ABCD , mặt đáy ABCD là hình vuông có cạnh bằng a, phẳng (ABCD) và SA = a . Tính khoảng cách d từ điểm A đến mặt phẳng (SBC).
Câu 4:
Cho hình chóp tứ giác đều có cạnh đáy bằng a và cạnh bên bằng 2a. Cosin của góc tạo bởi cạnh bên và mặt phẳng đáy bằng:
Câu 5:
Cho hình chóp S . ABCD có đáy ABCD là hình thang cân, đáy lớn AB. Biết rằngAD = DC = CB = a , AB = 2a , cạnh bên SA vuông góc với đáy và mặt phẳng (SBD) tạo với đáy góc 45o. Gọi I là trung điểm của cạnh AB. Tính khoảng cách d từ I đến mặt phẳng (SBD).
Câu 6:
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AC = 2, BC = 1, AA' = 1. Tính góc giữa AB' và (BCC'B')
Câu 7:
Khối hộp có diện tích đáy bằng S, độ dài cạnh bên bằng d và cạnh bên tạo với mặt đáy góc có thể tích bằng
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận