Câu hỏi:

27/05/2022 2,176

Cho hàm số y=f(x) liên tục trên R . Hàm số y=f'(x) có đồ thị như hình vẽ. Bất phương trình f2sinx2sin2x<m nghiệm đúng với mọix0;π khi và chỉ khi
Cho hàm số  y=f(x) liên tục trên R . Hàm số  y=f'(x) có đồ thị như hình vẽ. Bất phương trình f(2sinx)-2sin^2x<m  nghiệm đúng với mọi x thuộc (0;pi)   khi và chỉ khi (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Đặt t=2sinx .            

Do x0;πt0;2 .

Bất phương trình trở thành: ftt22<m,t0;2 .

Xét gt=ftt22  trên 0;2 .

Bài toán trở thành gt<m,t0;2 .

Ta có g't=f'tt=0f't=t .

Ta có bảng biến thiên của hàm g(t)   trên (0;2):

Cho hàm số  y=f(x) liên tục trên R . Hàm số  y=f'(x) có đồ thị như hình vẽ. Bất phương trình f(2sinx)-2sin^2x<m  nghiệm đúng với mọi x thuộc (0;pi)   khi và chỉ khi (ảnh 2)

Dựa vào bảng biến thiên, ta có: m>max0;2gt=g1=f112 .

Vậy m>f112 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Xét y=x3+x5 , ta có y'=3x2+1>0,x  hàm số đồng biến trên .

Lời giải

Đáp án C

Ta có 4m3+m2f2x+5=f2x+34m3+m=f2(x)+32f2x+5

8m3+2m=2f2x+62f2x+5

2m3=2f2x+52f2x+5+f2x+5

 (*)

Xét hàm số gt=t3+t  g't=3t2+1>0;tgt  là hàm số đồng biến trên .

Phương trình (*) suy ra g2m=g2f2x+52f2x+5=2m

m>02f2x+5=4m2m>0f2x=4m252m>52fx=4m252 1fx=4m252 2

(vì fx=0  chỉ có hai nghiệm phân biệt nên m>52 ).

+ Vì 4m252<0  nên từ đồ thị hàm số ta thấy phương trình fx=4m252  có một nghiệm duy nhất.

Từ yêu cầu bài toán suy ra phương trình fx=4m252  có hai nghiệm phân biệt.

+ Vì 4m252>0  nên từ đồ thị hàm số

4m252=44m25=32m=372 thoa manm=372 loai .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP