Câu hỏi:
12/07/2024 15,056Xét hai mệnh đề:
P: “Tứ giác ABCD là hình vuông”;
Q: “Tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau”.
a) Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó.
b) Hai mệnh đề P và Q có tương đương không? Nếu có, sử dụng thuật “điều kiện cần và đủ” hoặc “khi và chỉ khi” để phát biểu định lí P ⇔ Q.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Mệnh đề P ⇒ Q được phát biểu như sau:
P ⇒ Q: “Nếu tứ giác ABCD là hình vuông thì tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau”.
Mệnh đề đảo Q ⇒ P được phát biểu như sau:
Q ⇒ P: “Nếu tứ giác ABCD hình chữ nhật có hai đường chéo vuông góc với nhau thì tứ giác ABCD là là hình vuông”.
b) +) Tứ giác ABCD là hình vuông thì
⇒ ABCD là hình chữ nhật
Hơn nữa do ABCD là hình vuông nên hai đường chéo AC và BD vuông góc với nhau.
Do đó ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau.
Vì vậy mệnh đề P ⇒ Q đúng. (1)
+) Tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau thì tứ giác ABCD là hình vuông (theo dấu hiệu nhận biết).
Do đó mệnh đề Q ⇒ P đúng. (2)
Từ (1) và (2) suy ra P ⇔ Q và được phát biểu như sau:
“Tứ giác ABCD là hình vuông là điểu kiện cần và đủ để tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau”.
“Nếu tứ giác ABCD là hình vuông khi và chỉ khi tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau”.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xét tính đúng, sai và viết mệnh đề phủ định của các mệnh đề sau đây:
a) , x + 3 = 0;
b) , x2 + 1 ≥ 2x;
c)
Câu 2:
Trong các khẳng định sau, khẳng định nào là mệnh đề, khẳng định nào là mệnh đề chứa biến?
a) 3 + 2 > 5;
b) 1 – 2x = 0;
c) x – y = 2;
d) 1 – < 0.
Câu 3:
Xét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau:
a)
b)
c)
Câu 4:
Cho các mệnh đề sau:
P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”;
Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”;
R: “Có số thực x sao cho x2 + 2x – 1 = 0”.
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Sử dụng kí hiệu ∀, ∃ để viết lại các mệnh đề đã cho.
Câu 5:
Xét hai mệnh đề:
P: “Tứ giác ABCD là hình bình hành”;
Q: “Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm mỗi đường”.
a) Phát biểu mệnh đề P ⇒ Q và xét tính đúng sai của nó.
b) Phát biểu mệnh đề đảo của mệnh đề P ⇒ Q.
Câu 6:
Sử dụng thuật ngữ “điều kiện cần và đủ”, phát biểu các định lí sau:
a) Một phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương;
b) Một hình bình hành là hình thoi thì nó có hai đường chéo vuông góc với nhau và ngược lại.
về câu hỏi!