Câu hỏi:

11/07/2024 22,337

Trong các khẳng định sau, khẳng định nào là mệnh đề, khẳng định nào là mệnh đề chứa biến?

a) 3 + 2 > 5;

b) 1 – 2x = 0;

c) x – y = 2;

d) 1 – 2 < 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) 3 + 2 > 5 là một khẳng định có thể xác định được tính đúng sai. Do đó a) là mệnh đề.

+) 1 – 2x = 0 không xác định được tính đúng sai mà phụ thuộc vào giá trị của biến x. Do đó b) là mệnh đề chứa biến.

+) x – y = 2 không xác định được tính đúng sai mà phụ thuộc vào giá trị của biến x và y. Do đó c) là mệnh đề chứa biến.

+) 1 – 2 < 0 là một khẳng định có thể xác định được tính đúng sai. Do đó d) là mệnh đề.

Vậy các mệnh đề là a), d) và các mệnh đề chứa biến là b), c).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét x + 3 = 0

x = -3

Nhưng – 3 không là số tự nhiên.

Do đó không tồn tại số tự nhiên x thỏa mãn x + 3 = 0.

Vậy mệnh đề a) sai.

b) Xét bất phương trình: x2 + 1 ≥ 2x

x2 – 2x + 1 ≥ 0

(x – 1)2 ≥ 0 (luôn đúng với mọi x)

Do đó với mọi số thực x đề thỏa mãn x2 + 1 ≥ 2x.

Vậy mệnh đề b) đúng.

c) a,a2=a.

Ta có hằng đẳng thức: a2=a.

Nếu a ≥ 0 thì a2=a=a

Nếu a < 0 thì a2=a=a

Do đó với a ≥ 0 thì a2=a.

Vậy mệnh đề c) sai.

Lời giải

a) Gọi: P: “x,x2>0”.

Chọn x = 0 , ta thấy x2 = 02 = 0 > 0 (vô lí). Do đó mệnh đề P sai.

Mệnh đề phủ định của mệnh đề P là: P¯:"x,x20".

b) Gọi Q: “x,x2=5x4”.

Xét phương trình: x2 = 5x – 4

x2 – 5x + 4 = 0

x=1x=4

 

Ta thấy hai nghiệm 1 và 4 đều là các số thực.

Do đó mệnh đề Q đúng.

Mệnh đề phủ định của mệnh đề Q là: Q¯:"x,x25x4".

c) Gọi H: “x,2x+1=0”.

Xét 2x + 1 = 0 x=12

Do đó không tồn tại giá trị nguyên nào của x để 2x + 1 = 0.

Vì vậy mệnh đề H là mệnh đề sai.

Mệnh đề phủ định của mệnh đề H là: H¯:"x,2x+10".