Câu hỏi:

13/07/2024 4,111

Chứng minh rằng với mọi góc α (0° ≤ α  ≤ 180°), ta đều có:

a) cos2α  + sin2α  = 1;

b) tanα  . cotα  = 1 (0° < α  < 180°, α  ≠ 90°).

c) 1 + tan2α  = 1cos2α  (α  ≠ 90°);

d) 1 + cot2 α  = 1sin2α  (0° < α  < 180°).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Với mỗi góc α (0° ≤ α ≤ 180°), gọi M(x0; y0) là điểm trên nửa đường tròn đơn vị sao cho xOM^=α .

Media VietJack

Gọi P, Q tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Áp dụng định lý Pythagore cho tam giác OPM vuông tại P có cạnh huyền OM = 1.

Ta có: OP2 + MP2 = OM2

Mà OP = |x0| ; MP = OQ = y0 và OM = 1

Suy ra : |x0|2 + y02 = 1 tức là x02 + y02 = 1 (vì |x0|2 = x02)

Mặt khác, theo định nghĩa giá trị lượng giác của một góc ta có:

sinα = y0

cosα = x0

Suy ra cos2 α + sin 2 α  = x02 + y02 = 1

Vậy sin 2 α + cos2 α = 1.

b) Với mỗi góc α (0° < α  < 180°, α  ≠ 90°), gọi M(x0; y0) là điểm trên nửa đường tròn đơn vị sao cho xOM^=α .

Khi đó tanα  = y0x0  ; cotα = x0y0 ;

Suy ra tanα  . cotα  = y0x0. x0y0 = 1.

Vậy tanα  . cotα  = 1 (0° < α  < 180°, α  ≠ 90°).

c) Với α  ≠ 90° ; tanα =  x02 + y02 = sin 2α + cos2α = 1 ; cosα = x0 cos2α = x02.

Ta có: 1 + tan2α  =

1+y0x02=1+y02x20=x02+y02x20=1x20=1cos2α .

Vậy 1 + tan2α  = 1cos2α  (α  ≠ 90°).

d) Với 0° < α  < 180° ta có cotα = x0y0 và sinα = y0 sin2 α = y02.

Ta có : 1 + cot2α =

1+x0y02=1+x02y02=x02+y02y02=1y02=1sin2α .

Vậy 1 + cot2 α  = 1sin2α  (0o < α  < 180°).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm α (0° ≤ α  ≤ 180°) trong mỗi trường hợp sau:

a) cosα  = 22 ;

b) sinα  = 0;

c) tanα  = 1;

d) cotα  không xác định.

Xem đáp án » 11/07/2024 17,374

Câu 2:

Cho biết sin30° = 12 ; sin60° = 32 ; tan45° = 1. Sử dụng mối liên hệ giữa các giá trị lượng giác của hai góc bù nhau, phụ nhau để tính giá trị của E = 2cos30° + sin150° + tan135°.

Xem đáp án » 11/07/2024 12,285

Câu 3:

Cho góc α với cosα  = 22 . Tính giá trị của biểu thức A = 2sin2α  + 5cos2α .

Xem đáp án » 13/07/2024 11,049

Câu 4:

Chứng minh rằng:

a) sin20° = sin160°;

b) cos50° =   cos130°.

Xem đáp án » 11/07/2024 8,701

Câu 5:

Dùng máy tính cầm tay, hãy thực hiện các yêu cầu dưới đây:

a) Tính: sin168°45'33"; cos17°22'35"; tan156°26'39"; cot 56°36'42".

b) Tìm α (0° ≤ α  ≤ 180°) trong các trường hợp sau:

i) sinα  = 0,862;

ii) cosα  =   0,567;

iii) tanα  = 0,334.

Xem đáp án » 13/07/2024 6,119

Câu 6:

Tìm các giá trị lượng giác của góc 135°.

Xem đáp án » 02/06/2022 5,435

Câu 7:

Cho biết sinα = 12 , tìm góc α (0° ≤ α  ≤ 180°) bằng cách vẽ nửa đường tròn đơn vị.

Xem đáp án » 02/06/2022 5,297

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store