Câu hỏi:

12/07/2024 20,398 Lưu

Hai người quan sát khinh khí cầu tại hai địa điểm P và Q nằm ở sườn đồi nghiêng 32° so với phương ngang, cách nhau 60 m (Hình 10). Người quan sát tại P xác định góc nâng của khinh khí cầu là 62°. Cùng lúc đó, người quan sát tại Q xác định góc nâng của khinh khí cầu đó là 70°. Tính khoảng cách từ Q đến khinh khí cầu.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi R là vị trí của khinh khí cầu.

Do quan sát tại P xác định góc nâng của khinh khí cầu là 62° nên RPQ^=62o32o=30o

Do quan sát tại Q xác định góc nâng của khinh khí cầu là 70° nên RQP^=180o(70o32o)=142o

Tam giác RPQ có:

R^+RPQ^+RQP^=180oR^=180o(RPQ^+RQP^)=180o(30o+142o)=8o

Áp dụng định lí sin cho tam giác RPQ ta có:

RQsinRPQ^=PQsinRRQsin30o=60sin8oRQ=60sin30osin8o215,6

Vậy khoảng cách từ Q đến khinh khí cầu khoảng 215,6 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt BD = x km, khi đó ta có CB = BD + CD = x + 1.

Trong tam giác ABC vuông tại B ta có:    tanACB^=tan32o=ABCB=ABx+1AB=(x+1)tan32o=xtan32o+tan32o(1)

Trong tam giác ABD vuông tại B ta có:

tanADB^=tan40o=ABBD=ABxAB=xtan40o (2)

Từ (1) và (2) suy ra: xtan32o+tan32o=xtan40ox=tan32otan40otan32o2,92

Suy ra AB = x.tan40° ≈ 2,92.tan40° ≈ 2,45 km.

Vậy chiều cao AB của một ngọn núi khoảng 2,45 km.

Lời giải

Gọi A và B lần lượt là vị trí của hai máy bay sau khi cất cánh 90 phút.

Đổi 90 phút = 1,5 giờ.

Sau 90 phút (tức là sau 1,5 giờ) chiếc máy bay di chuyển theo hướng tây đi được quãng đường là: 450.1,5 = 675 km, tức là OA = 675 km.

Sau 90 phút (tức là sau 1,5 giờ) chiếc máy bay di chuyển theo hướng lệch bắc 25° về phía tây đi được quãng đường là: 630.1,5 = 945 km, tức là OB = 945 km.

Ta có AOB^=90o25o=65o .

Áp dụng định lí côsin cho tam giác OAB ta có:

AB2 = OA2 + OB2 – 2.OA.OB.cos  = 6752 + 9452 – 2.675.945.cos65o ≈ 809 494,8

AB = 809 494,8899,7 .

Vậy sau 90 phút hai máy bay cách nhau khoảng 899,7 km.