Câu hỏi:
09/01/2020 1,208Gọi S là tập tất cả các số tự nhiên gồm sáu chữ số được tạo thành từ các chữ số 1, 2, 3, 4, trong đó chữ số 1 có mặt đúng 3 lần, các chữ số còn lại mỗi chữ số có mặt đúng một lần. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn không có hai chữ số 1 nào đứng cạnh nhau.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn C
Ta có (vì chữ số 1 có mặt đúng 3 lần).
|
2 |
|
3 |
|
4 |
|
Xếp ngẫu nhiên 3 chữ số 2, 3, 4 có (cách). Vì 3 chữ số 2, 3, 4 sau khi xếp sẽ có 4 vách ngăn (gồm 2 vách ngăn giữa và 2 vách ngăn đầu) nên số cách xếp các chữ số 1 không kề nhau tương ứng số cách xếp các chữ số 1 vào các vách ngăn là: (cách).
Vậy xác suất cần tính là:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ một hộp chứa 11 quả cầu màu đỏ và 4 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng
Câu 2:
Có hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam và 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện một học sinh nữ.
Câu 3:
Có 8 người khách bước ngẫu nhiên vào một cửa hàng có 3 quầy. Tính xác suất để 3 người cùng đến quầy thứ nhất.
Câu 4:
Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 7 quả cầu đỏ và 5 quả cầu màu xanh, hộp thứ hai chứa 6 quả cầu đỏ và 4 quả cầu màu xanh. Lấy ngẫu nhiên từ một hộp 1 quả cầu. Xác suất sao cho hai quả lấy ra cùng màu đỏ.
Câu 5:
Cho tập hợp S = {1,2,3...,17} gồm 17 số nguyên dương đầu tiên. Chọn ngẫu nhiên 3 phần tử của tập S. Tính xác suất để tập hợp con chọn được có tổng các phần tử chia hết cho 3.
Câu 6:
Một hộp đựng 15 quả cầu trong đó có 6 quả màu đỏ, 5 quả màu xanh, 4 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu trong 15 quả cầu đó. Tính xác suất để 6 quả lấy được có đủ ba màu.
Câu 7:
Một đoàn tàu gồm ba toa đỗ sân ga. Có 5 hành khách lên tàu. Mỗi hành khách độc lập với nhau. Chọn ngẫu nhiên một toa. Tìm xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu.
về câu hỏi!