Câu hỏi:

13/07/2024 7,607

Cho elip x236+y220=1, điểm M thay đổi trên elip. Hỏi khoảng cách từ M tới một tiêu điểm của elip lớn nhất bằng bao nhiêu, nhỏ nhất bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Có a2 = 36, suy ra a = 6.

c=a2b2=3620=16=4.

Gọi toạ độ của M là (x; y).

Ta xét khoảng cách từ M đến F1.

Theo công thức độ dài bán kính qua tiêu ta có MF1 = 6 + 46x = 6 + 23x.

Mặt khác, vì M thuộc elip nên –6 ≤ x ≤ 6

 23.623x23.6423x426+23x10.

Vậy 2 ≤ MF1 ≤ 10.

Vậy độ dài MF1 nhỏ nhất bằng 2 khi M có hoành độ bằng –6, lớn nhất bằng 10 khi M có hoành độ bằng 6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi phương trình chính tắc của elip đã cho là x2a2+y2b2=1 (a > b > 0).

Theo đề bài ta có:

– Độ dài trục lớn bằng 8, suy ra 2a = 8, suy ra a = 4.

– Tiêu cự bằng 6, suy ra 2c = 6 hay c = 3, suy ra b2 = a2 – c2 = 42 – 32 = 7.

Vậy phương trình chính tắc của elip đã cho là x216+y27=1.

b) Gọi phương trình chính tắc của elip đã cho là x2a2+y2b2=1 (a > b > 0).

Theo đề bài ta có:

– Độ dài trục lớn bằng 8, suy ra 2a = 8, suy ra a = 4.

– Elip có tâm sai bằng 32, suy ra ca=32c4=32c=23

b2=a2c2=42232=4.

Vậy phương trình chính tắc của elip đã cho là x216+y24=1.