Câu hỏi:

13/06/2022 986 Lưu

Cho hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh góc vuông bằng 2a. Thể tích khối nón đã cho bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Cho hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh góc vuông bằng 2a. Thể tích khối nón đã cho bằng (ảnh 1)

Ta có tam giác ABC vuông cân tại A có đường cao AH

AB=AC=2aBC=22a

AH=BC2=22a2=a2=BH=CH

Vậy thể tích khối nón là: V=13πR2h=13πBH2.AH=13π.(a2)2.(a2)=22πa33

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Dựa vào phương trình tham số của đường thẳng d ta có 1 vectơ chỉ phương là u=(3;2;5)  .

 

Lời giải

Đáp án B

Vì các điểm (1;0)  ,(0;0)  , (1;0)  thuộc đồ thị hàm số y=f'(x) nên ta có hệ: {1+ab+c=0c=01+a+b+c=0{a=0b=1c=0f'(x)=x3xf''(x)=3x21

Ta có: g(x)=f(f'(x))g'(x)=f'(f'(x)).f''(x)

Xét g'(x)=0f'(f'(x)).f''(x)=0f'(x3x).(3x21)=0

[x3x=0x3x=1x3x=13x21=0[x=±1x=0x=1,325x=1,325x=±33

 

Ta có bảng xét dấu g'(x)  như sau:

Cho hàm số y=f(x) , hàm số f'(x)= x^3+ax^2+bx+c (a,b,c thuộc R)   có đồ thị như hình vẽ. Hàm số g(x)= f(f'(x)) nghịch biến trên khoảng nào dưới đây? (ảnh 2)

 

Dựa vào bảng biến thiên, suy ra BC nghịch biến trên (;2) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP