Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Bước 1. Với n = 1, ta có 81 = 8 > 1 = 13. Do đó bất đẳng thức đúng với n = 1.
Bước 2. Giả sử bất đẳng thức đúng với n = k ≥ 1, nghĩa là có: 8k ≥ k3.
Ta cần chứng minh bất đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:
8k + 1 ≥ (k + 1)3.
Sử dụng giả thiết quy nạp, ta có:
8k + 1 = 8 . 8k ≥ 8 . k3 = k3 + 3k3 + 3k3 + k3 ≥ k3 + 3k2 + 3k + 1 (vì k ≥ 1) = (k + 1)3.
Vậy bất đẳng thức đúng với n = k + 1.
Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi số tự nhiên n ≥ 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
a) Tìm ba số hạng đầu tiên trong khai triển của (1 + 2x)6, các số hạng được viết theo thứ tự số mũ của x tăng dần.
b) Sử dụng kết quả trên, hãy tính giá trị gần đúng của 1,026.
Câu 3:
Chứng minh rằng với mọi n :
a) 3n – 1 – 2n chia hết cho 4;
b) 7n – 4n – 3n chia hết cho 12.
Câu 4:
Với một bình rỗng có dung tích 2 l, một bạn học sinh thực hiện thí nghiệm theo các bước như sau:
Bước 1: Rót 1 l nước vào bình, rồi rót đi một nửa lượng nước trong bình.
Bước 2: Rót 1 l nước vào bình, rồi lại rót đi một nửa lượng nước trong bình.
Cứ như vậy, thực hiện các bước 3,4,...
Kí hiệu an là lượng nước có trong bình sau bước .
a) Tính a1, a2, a3. Từ đó dự đoán công thức tính an với n
b) Chứng minh công thức trên bằng phương pháp quy nạp toán học.
về câu hỏi!