Câu hỏi:

12/07/2024 3,379 Lưu

Từ 15 bút chì màu có màu khác nhau đôi một,

a) Có bao nhiêu cách chọn ra một số bút chì màu, tính cả trường hợp không chọn cái nào?

b) Có bao nhiêu cách chọn ra ít nhất 8 bút chì màu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Có C150 cách chọn ra 0 bút chì màu;

C151 cách chọn ra 1 bút chì màu;

C152 cách chọn ra 2 bút chì màu;

...

C1515 cách chọn ra 15 bút chì màu.

Vậy có tổng cộng C150+C151+C152+...+C1514+C1515=215=32768 cách chọn ra một số bút chì màu.

b) Số cách chọn ra ít nhất 8 bút chì màu là: C150+C151+C152+...+C157+C158.

Vì C150=C1515,  C151=C1514,  C152=C1513,...,  C157=C158

nên C150+C151+C152+...+C157=12(C150+C151+C152+...+C1514+C1515)=12.32768=16384

C150+C151+C152+...+C157+C158=16384+6345=22819.

Vậy có 22819 cách chọn ra ít nhất 8 bút chì màu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Có (3x – 1)7

=C70(3x)7+C71(3x)6(1)+C72(3x)5(1)2+C73(3x)4(1)3

+C74(3x)3(1)4+C75(3x)2(1)5+C76(3x)1(1)6+C77(1)7

= 2187x7 – 5103x6 + 5103x5 – 2835x4 + 945x3 – 189x2 + 21x – 1.

a) a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7

= (–1) + 21 + (–189) + 945 + (–2835) + 5103 + (–5103) + 2187 = 128.

b) a0 + a2 + a4 + a6

= (–1) + (–189) + (–2835) + (–5103) = –8128.

Lời giải

Hướng dẫn giải

Số cách lấy k quả cầu từ hộp A rồi cho vào hộp B là C10k với 0 ≤ k ≤ 10.

Như vậy có tất cả C100+C101+C102+...+C109+C1010 cách.

Lại có C100+C101+C102+...+C109+C1010=210=1024

nên có tổng cộng 1024 cách lấy.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP