Câu hỏi:

12/07/2024 1,047 Lưu

Cho điểm M(x; y) nằm trên hypebol (H):x2a2y2b2=1.

a) Chứng minh rằng F1M2 – F2M2 = 4cx.

b) Giả sử điểm M(x; y) thuộc nhánh đi qua A1(–a; 0) (Hình 5a). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất MF2 – MF1 = 2a đã biết để chứng minh MF2+MF1=2cxa. Từ đó, chứng minh các công thức: MF1=acaxMF2=acax.

b) Giả sử điểm M(x; y) thuộc nhánh đi qua A2(a; 0) (Hình 5 b). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất MF1 – MF2 = 2a đã biết để chứng minh MF2+MF1=2cxa. Từ đó, chứng minh các công thức: MF1=a+caxMF2=a+cax.

Cho điểm M(x; y) nằm trên hypebol (H): x^2/a^2 - y^2/b^2 = 1 .  a) Chứng minh rằng F1M2 – F2M2 = 4cx.  b) Giả sử điểm M(x; y) thuộc nhánh đi qua A1(–a; 0) (Hình 5a). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất MF2 – MF1 = 2a đã biết để chứng minh (ảnh 1)

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) F1M2 = [x  ( c)]2(y  0)2(x + c)2 + y2 = x2 +2cx + c2 + y2;

F2M2 =  (x  c)2 +(y  0)2= x2 -2cx + c2 + y2

F1M2F2M2 = (x2 +2cx + c2 + y2) – (x2 -2cx + c2 + y2) = 4cx.

b) Ta có: MF12 – MF22 = 4cx => (MF1 + MF2)(MF1 – MF2) = 4cx => (MF1 + MF2)(–2a) = 4cx

=> MF1 + MF2 = 4cx2a = –2cax. Khi đó:

(MF1 + MF2) + (MF1 – MF2) = –2ca + (–2a) => 2MF1 = –

2ca 2a

=> MF1 = (cax+a)=acax.

(MF1 + MF2) – (MF1 – MF2) = –2ca – (–2a) => 2MF2 = -2ca + 2a

=> MF2 =  a –c/a x.

c) Ta có: MF12 – MF22 = 4cx =>  (MF1 + MF2)(MF1 – MF2) = 4cx => (MF1 + MF2)2a = 4cx

=> MF1 + MF2 = 4cx2a = 2cax. Khi đó:

(MF1 + MF2) + (MF1 – MF2) =2ca + 2a => 2MF1 =2ca + 2a

=> MF1 = a + cax.

(MF1 + MF2) – (MF1 – MF2) =2ca – 2a => 2MF2 =2ca – 2a

=> MF2 = – a +cax.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

|a+cax|=|12+1312.13|=31312;

Hướng dẫn giải

a) Có a2 = 144, b2 = 25 => a = 12, b = 5, c=a2+b2=13.

Tâm sau của (H) là e = ca=1312.

Độ dài hai bán kính qua tiêu của điểm M(13;2512) là:

MF1|a+cax|=|12+1312.13|=31312;  

MF2|acax|=|121312.13|=2512.

b) Hai tiêu điểm của hypebol là F1(–13; 0) và F2(13; 0).

Phương trình đường chuẩn ứng với tiêu điểm F1 Δ1:x+ae=0x+a2c=0x+14413=0.

Phương trình đường chuẩn ứng với tiêu điểm F2 Δ1:xae=0xa2c=0x14413=0.

c) NF1 = |a+cax|; NF2|acax|.

NF1 = 2NF2 |a+cax|=2|acax|[a+cax=2(acax)a+cax=2(caxa)[a=3cax3a=cax[x=a23c=1443.13=4813x=3a2c=3.14413=43213.

+) x = 48/13 loại vì 0 < x < a.

+) x = 432/13 thì (43213)2144y225=1y2=32400169[y=18013y=18013.

Vậy có hai điểm N thoả mãn đề bài là N1(43213;18013) và N2(43213;18013).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP