Câu hỏi:
12/07/2024 845Sao Diêm Vương chuyển động xung quanh Mặt Trời theo quỹ đạo là một đường elip có một trong hai tiêu điểm là tâm của Mặt Trời. Biết elip này có bán trục lớn a ≈ 5,906 . 106 km và tâm sai e ≈ 0,249. (Nguồn: https://vi.wikipedia.org)
Tìm khoảng cách nhỏ nhất (gần đúng) giữa Sao Diêm Vương và Mặt Trời.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn hệ trục toạ độ sao cho Mặt Trời trùng với tiêu điểm F1 của elip.
Khi đó elip có phương trình là (a > b > 0).
Theo đề bài, ta có: elip này có bán trục lớn a ≈ 5,906 . 106 km và tâm sai e ≈ 0,249
Giả sử Sao Diêm Vương có toạ độ là M(x; y).
Khi đó khoảng cách giữa Sao Diêm Vương và Mặt Trời là: MF1 = a + ex.
Vì x ≥ –a nên MF1 ≥ a – ea ≈ 5,906 . 106 – 0,249 . 5,906 . 106 = 4435406 (km).
Vậy khoảng cách nhỏ nhất giữa Sao Diêm Vương và Mặt Trời xấp xỉ 4435406 km.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Vệ tinh nhân tạo đầu tiên được Liên Xô (cũ) phóng từ Trái Đất năm 1957. Quỹ đạo của vệ tinh đó là một đường elip nhận tâm Trái Đất là một tiêu điểm. Người ta đo được vệ tinh cách bề mặt Trái Đất gần nhất là 583 dặm và xa nhất là 1342 dặm (1 dặm xấp xỉ 1,609 km). Tìm tâm sai của quỹ đạo đó, biết bán kính của Trái Đất xấp xỉ 4000 dặm. (Nguồn: Sách giáo khoa Hình học 10, Ban Nâng cao, Nhà xuất bản Giảo dục Việt Nam, 2018)
Câu 2:
Cho parabol có phương trình chính tắc y2 = 2x. Tìm tiêu điểm, phương trình đường chuẩn của parabol và vẽ parabol đó.
Câu 3:
Cho hình chữ nhật ABCD với bốn đỉnh A(–4; 3), B(4; 3), C(4; –3), D(–4; –3).
a) Viết phương trình chính tắc của elip nhận ABCD là hình chữ nhật cơ sở. Vẽ elip đó.
b) Viết phương trình chính tắc của hypebol nhận ABCD là hình chữ nhật cơ sở. Vẽ hypebol đó.
Câu 4:
Quan sát Hình 22a, Hình 22b, Hình 22c và nêu tỉ số khoảng cách từ một điểm M nằm trên mỗi đường conic đến tiêu điểm của nó và khoảng cách từ điểm M đến đường chuẩn tương ứng với tiêu điểm đó.
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng Δ: x = –5 và điểm F(–4; 0). Cho ba điểm A(–3; 1), B(2; 8), C(0; 3).
a) Tính các tỉ số sau: .
b) Hỏi mỗi điểm A, B, C lần lượt nằm trên loại đường conic nào nhận F là tiêu điểm và Δ là đường chuẩn ứng với tiêu điểm đó?
Câu 6:
Cho đường thẳng Δ và điểm O sao cho khoảng cách từ O đến Δ là OH = 1 (Hình 39).
Với mỗi điểm M di động trong mặt phẳng, gọi K là hình chiếu vuông góc của M lên Δ. Chứng minh tập hợp các điểm M trong mặt phẳng sao cho MK2 – MO2 = 1 là một đường parabol.
về câu hỏi!