Câu hỏi:

15/06/2022 1,187

Cho hình lập phương ABCD.A1B1C1D1  có cạnh bằng 1. Hai điểm M, N lần lượt thay đổi trên các đoạn AB1    BC1sao cho  luôn tạo với mặt phẳng (ABCD)  một góc 60° (tham khảo hình vẽ). Giá trị bé nhất của đoạn MN 

Cho hình lập phương ABCD. A1B1C1D1  có cạnh bằng 1. Hai điểm M, N lần lượt thay đổi trên các đoạn AB1  và BC1  sao cho   luôn tạo với mặt phẳng (ABCD)  một góc 60 (tham khảo hình vẽ). Giá trị bé nhất của đoạn   là  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Cho hình lập phương ABCD. A1B1C1D1  có cạnh bằng 1. Hai điểm M, N lần lượt thay đổi trên các đoạn AB1  và BC1  sao cho   luôn tạo với mặt phẳng (ABCD)  một góc 60 (tham khảo hình vẽ). Giá trị bé nhất của đoạn   là  (ảnh 2)

Chọn hệ trục Oxyz như hình vẽ ta có

A(0;0;0), B(0;1;0), D(1;0;0), C(1;1;0), A1(0;0;1), C1(1;1;1)

Ta có AM=mAB1, (0<m<1)M(0;m;m)  ;

BN=nBC1, (0<n<1)N(n;1;n)

MN(n;1m;nm)MN2=n2+(1m)2+(nm)2

MN tạo với mặt phẳng (ABCD)(Oxy)  góc 60°

sin60°=|MN.k||MN|.|k||nm|n2+(1m)2+(nm)2=32

(nm)2=3[n2+(1m)2]3.(nm+1)22=32[(nm)2+2(nm)+1]

(nm)2+6(nm)+3036nm3+636|nm|3+6

MN=n2+(1m)2+(nm)2=233|nm|233(36)=2(32) minMN=2(32)khi m=462, n=622 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Thể tích khối chóp S.ABC tính theo công thức: V=13SABC.SA=13.a2.12a.2a=a323 .

Lời giải

Đáp án B

Vì các mặt chéo (SAC)  (SBD)  cùng vuông góc với mặt đáy (ABCD)  nên SO(ABCD)  với SO(ABCD) .

Kẻ OKAB  tại K

(SOK)ABSKAB

((SAB),(ABCD))=(SK,OK)=SKO^=60°

Do AD//BC  nên ODOB=OAOC=ADBC=2

DB=3OBd(D,(SAB))=3d(O,(SAB))

Trong mặt phẳng (SOK) , kẻ OHSK  tại H

OH(SAB)d(D,(SAB))=3d(O,(SAB))=3OH

Trong tam giác vuông ΔSOK:1OH2=1SO2+1OK2=34+94=3OH=13

Vậy T=ab+1=2(1)+1=1 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay