Câu hỏi:

15/06/2022 7,747

Trong không gian Oxyz, cho mặt phẳng (P):x+yz4=0  và điểm A(2;1;3)  . Gọi Δ   là đường thẳng đi qua A và song song với (P), biết  Δ có một vectơ chỉ phương là  đồng thời  Δđồng phẳng và không song song với Oz. Tính  ac .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

 Δ đồng phẳng và không song song với Oz, suy ra ΔOz  .

Giả sử ΔOz=B(0;0;b)

AB=(2;1;b3) là 1 vectơ chỉ phương của .

 nP=(1;1;1)là 1 vectơ chỉ phương của .

DoΔ//(P)AB.nP=01+1b+3=0b=2 .

AB=(2;1;1){a=2b=1c=1ac=21=2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Cho hình chóp S.ABC có SA vuông góc với (ABC) , tam giác ABC đều AB=a ; góc giữa SB và mặt phẳng (ABC)  bằng 60 độ . Gọi M, N lần lượt là trung điểm của SA, SB. Tính thể tích khối chóp SMNC. (ảnh 1)

Ta có: SA(ABC)(SB,(ABC))^=(SB,AB)^=SBA^=60° .

Xét tam giác vuông SAB: SA=AB.tan60°=a3 .

VS.ABC=13.SA.SABC=13.a3.a234=a34.

Ta có: VSMNCVSABC=SMSA.SNSB=14VSMNC=a316.

Lời giải

Đáp án B

Xét  f(x)=x42x3+x2+m trên đoạn [1;2]  .

f'(x)=4x36x2+2x;f'(x)=0x=0;x=1;x=12.

Ta có: f(0)=m;f(12)=m+116;f(1)=f(2)=m+4 .

Suy ra {max[1;2]f(x)=f(2)=m+4max[1;2]f(x)=f(0)=f(1)=m .

TH1: Nếu m0{m0m+m+4=20m=8.

TH2: Nếu m4{m4(m+4)m=20m=12.

TH3: Nếu 4<m<0min[1;2]y=0;max[1;2]y=max{|m+4|,|m|}=max{m+4,m} .

Suy ra  min[1;2]y+max[1;2]y<4<0+20=20(loại).

Vậy tổng các giá trị của m là -4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP