Câu hỏi:
13/07/2024 2,571Hãy chọn ngẫu nhiên trong lớp ra 5 bạn nam và 5 bạn nữ rồi đo chiều cao các bạn đó. So sánh xem chiều cao của các bạn nam hay các bạn nữ đồng đều hơn.
Quảng cáo
Trả lời:
Kết quả của bài tập này phụ thuộc vào chiều cao của các bạn nam và nữ mà bạn chọn ra.
Chẳng hạn, ta có ví dụ sau:
+ Chọn ra 5 bạn nam có chiều cao lần lượt là: 162 cm; 157 cm; 169 cm; 170 cm; 165 cm.
+ Chọn ra 5 bạn nữ có chiều cao lần lượt là: 150 cm; 163 cm; 155 cm; 160 cm; 169 cm.
Ta đi tính khoảng biến thiên, khảng tứ phân vị, phương sai mẫu và độ lệch chuẩn của từng mẫu số liệu rồi so sánh.
+ Sắp xếp các số liệu chiều cao nam theo thứ tự không giảm, ta được:
157; 162; 165; 169; 170.
Khoảng biến thiên chiều cao của nam: R1 = 170 – 157 = 13.
Vì cỡ mẫu là 5 là số lẻ nên tứ phân vị thứ hai là Q2 = 165.
Tứ phân vị thứ nhất là trung vị của mẫu: 157; 162. Do đó Q1 = 159,5.
Tứ phân vị thứ ba là trung vị của mẫu: 169; 170. Do đó Q3 = 169,5.
Khoảng tứ phân vị ∆Q = 169,5 – 159,5 = 10.
Chiều cao trung bình của nam là:
Phương sai mẫu số liệu chiều cao của nam là:
(1622 + 1572 + 1692 + 1702 + 1652) – (164,6)2 = 22,64.
Độ lệch chuẩn mẫu số liệu chiều cao của nam là:
S1 = .
+ Sắp xếp các số liệu chiều cao nữ theo thứ tự không giảm, ta được:
150; 155; 160; 163; 169.
Khoảng biến thiên chiều cao của nữ: R2 = 169 – 150 = 19.
Vì cỡ mẫu là 5 là số lẻ nên tứ phân vị thứ hai là Q'2 = 160.
Tứ phân vị thứ nhất là trung vị của mẫu: 150; 155. Do đó Q'1 = 152,5.
Tứ phân vị thứ ba là trung vị của mẫu: 163; 169. Do đó Q'3 = 166.
Khoảng tứ phân vị ∆'Q = 166 – 152,5 = 13,5.
Chiều cao trung bình của nữ là:
Phương sai mẫu số liệu chiều cao của nữ là:
(1502 + 1632 + 1552 + 1602 + 1692) – (159,4)2 = 42,64.
Độ lệch chuẩn mẫu số liệu chiều cao của nữ là:
S2 = .
Từ đó ta thấy khoảng biến thiên, khoảng tứ phân vị, phương sai mẫu và độ lệch chuẩn mẫu số liệu chiều cao của nam đều thấp hơn của nữ. Điều đó cho ta biết rẳng chiều cao của nam có độ phân tán thấp hơn chiều cao của nữ ở mẫu số liệu trên. Do đó, chiều cao của các bạn nam đồng đều hơn so chiều cao của các bạn nữ.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Sắp xếp các số liệu theo thứ tự không giảm, ta được:
3; 3; 9; 9; 10; 10; 12; 12; 37.
+ Vì cỡ mẫu là n = 9 lá số lẻ nên giá trị tứ phân vị thứ hai là Q2 = 10.
+ Tứ phân vị thứ nhất là trung vị của mẫu: 3; 3; 9; 9. Do đó Q1 = 6.
+ Tứ phân vị thứ ba là trung vị của mẫu: 10; 12; 12; 37. Do đó Q3 = 12.
+ Khoảng tứ phân vị của mẫu là: ∆Q = 12 – 6 = 6.
Ta có: Q3 + 1,5∆Q = 12 + 1,5 . 6 = 21 và Q1 – 1,5∆Q = 6 – 1,5 . 6 = – 3.
Do đó mẫu có một giá trị ngoại lệ là 37.
Lời giải
a)
* Nhà máy A:
+ Số trung bình mức lương hàng tháng:
.
+ Giá trị 4 và 5 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy A là 4 và 5.
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
4; 4; 4; 5; 5; 5; 6; 47.
Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2A = 5.
Tứ phân vị thứ nhất là trung vị của mẫu: 4; 4; 4; 5. Do đó Q1A = 4.
Tứ phân vị thứ ba là trung vị của mẫu: 5; 5; 6; 47. Do đó Q3A = 5,5.
+ Phương sai mẫu:
(42 + 52 + 52 + 472 + 52 + 62 + 42 + 42) – 102 = 196.
+ Độ lệch chuẩn: SA = .
* Nhà máy B:
+ Số trung bình mức lương hàng tháng:
.
+ Giá trị 9 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy B là 9.
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
2; 8; 9; 9; 9; 9; 9; 10; 11.
Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2B = 9.
Tứ phân vị thứ nhất là trung vị của mẫu: 2; 8; 9; 9. Do đó Q1B = 8,5.
Tứ phân vị thứ ba là trung vị của mẫu: 9; 9; 10; 11. Do đó Q3B = 9,5.
+ Phương sai mẫu:
(22 + 82 + 92 + 92 + 92 + 92 + 92 + 102 + 112) – 8,42 = 6,55.
+ Độ lệch chuẩn: SB = .
b)
+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy A là: ∆QA = 5,5 – 4 = 1,5.
Ta có: Q3A + 1,5∆QA = 5,5 + 1,5 . 1,5 = 7,75 và Q1A – 1,5∆QA = 4 – 1,5 . 1,5 = 1,75.
Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy A là 47.
+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy B là: ∆QB = 9,5 – 8,5 = 1.
Ta có: Q3B + 1,5∆QB = 9,5 + 1,5 . 1 = 11 và Q1B – 1,5∆QB = 8,5 – 1,5 . 1 = 7.
Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy B là 2.
+ Quan sát các số liệu tính được ở câu a), ta thấy
- Số trung bình mức lương hàng tháng của công nhân ở nhà máy A cao hơn nhà máy B.
- Phương sai mẫu và độ lệch chuẩn mẫu số liệu ở nhà máy A cao hơn nhà máy B nên mức lương hằng tháng của công nhân nhà máy A có độ phân tán cao hơn nhà máy B, do đó mức lương của công nhân nhà máy B ổn định hơn nhà máy A.
- Mức lương xuất hiện nhiều nhất trong mẫu A là 4 và 5 triệu đồng, nhà máy B là 9 triệu đồng.
Do đó, ta có thể khẳng định công nhân nhà máy A có mức lương cao hơn (đều và ổn định hơn).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận