Câu hỏi:

13/07/2024 5,785

Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:

a)

Media VietJack

b)

Giá trị

0

1

2

3

4

Tần suất

0,1

0,2

0,4

0,2

0,1

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Cỡ mẫu n = 10 + 20 + 30 + 20 + 10 = 90.

Số trung bình: x¯=10.(2)+20.(1)+30.0+20.1+10.290=0

Phương sai mẫu số liệu là:

S2 = 190[10 . (– 2)2 + 20 . (– 1)2 + 30 . 02 + 20 . 12 + 10 . 22] – 02 = 43.

Độ lệch chuẩn mẫu số liệu là:

S = S2=43=233.

Sắp xếp các số liệu của mẫu theo thứ tự không giảm, ta được:

– 2; – 2; – 2; – 2 ; – 2; – 2; – 2; – 2; – 2; – 2; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2.

Khoảng biến thiên của mẫu số liệu là: R = 2 – (– 2) = 4.

Vì cỡ mẫu là 90 là số chẵn nên tứ phân vị thứ hai là Q2 = 0.

Tứ phân vị thứ nhất là trung vị của mẫu: – 2; – 2; – 2; – 2 ; – 2; – 2; – 2; – 2; – 2; – 2; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0. Do đó Q1 = – 1.

Tứ phân vị thứ ba là trung vị của mẫu: 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2. Do đó Q3 = 1.

Khoảng tứ phân vị là ∆Q = 1 – (– 1) = 2.

b) Số trung bình: x¯ = 0,1 . 0 + 0,2 . 1 + 0,4 . 2 + 0,2 . 3 + 0,1 . 4 = 2.

Phương sai mẫu số liệu là:

S2 = (0,1 . 02 + 0,2 . 12 + 0,4 . 22 + 0,2 . 32 + 0,1 . 42) – 22 = 1,2.

Độ lệch chuẩn mẫu số liệu là:

S = S2=1,2=305.

Giả sử cỡ mẫu là 10. Khi đó:

Tần số của giá trị 0 là 0,1 . 10 = 1.

Tần số của giá trị 1 là 0,2 . 10 = 2.

Tần số của giá trị 2 là 0,4 . 10 = 4.

Tần số của giá trị 3 là 0,2 . 10 = 2.

Tần số của giá trị 4 là 0,1 . 1 = 1.

Sắp xếp các số liệu của mẫu theo thứ tự không giảm, ta được:

0; 1; 1; 2; 2; 2; 2; 3; 3; 4.

Khoảng biến thiên của mẫu số liệu là R = 4 – 0 = 4.

Vì cỡ mẫu là số chẵn nên tứ phân vị thứ hai là Q2 = 2.

Tứ phân vị thứ nhất là trung vị của mẫu: 0; 1; 1; 2; 2. Do đó Q1 = 1.

Tứ phân vị thứ ba là trung vị của mẫu: 2; 2; 3; 3; 4. Do đó Q3 = 3.

Khoảng tứ phân vị là: ∆Q = 3 – 1 = 2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

3; 3; 9; 9; 10; 10; 12; 12; 37.

+ Vì cỡ mẫu là n = 9 lá số lẻ nên giá trị tứ phân vị thứ hai là Q2 = 10.

+ Tứ phân vị thứ nhất là trung vị của mẫu: 3; 3; 9; 9. Do đó Q1 = 6.

+ Tứ phân vị thứ ba là trung vị của mẫu: 10; 12; 12; 37. Do đó Q3 = 12.

+ Khoảng tứ phân vị của mẫu là: ∆Q = 12 – 6 = 6.

Ta có: Q3 + 1,5∆Q = 12 + 1,5 . 6 = 21 và Q1 – 1,5∆Q = 6 – 1,5 . 6 = – 3.

Do đó mẫu có một giá trị ngoại lệ là 37.

Lời giải

a)

* Nhà máy A:

+ Số trung bình mức lương hàng tháng:

xA¯=4+5+5+47+5+6+4+48=10.

+ Giá trị 4 và 5 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy A là 4 và 5.

+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:

4; 4; 4; 5; 5; 5; 6; 47.

Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2A = 5.

Tứ phân vị thứ nhất là trung vị của mẫu: 4; 4; 4; 5. Do đó Q1A = 4.

Tứ phân vị thứ ba là trung vị của mẫu: 5; 5; 6; 47. Do đó Q3A = 5,5.

+ Phương sai mẫu:

SA2=18(42 + 52 + 52 + 472 + 52 + 62 + 42 + 42) – 102 = 196.

+ Độ lệch chuẩn: SA = SA2=196=14.

* Nhà máy B:

+ Số trung bình mức lương hàng tháng:

xB¯=2+9+9+8+10+9+9+11+998,4.

+ Giá trị 9 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy B là 9.

+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:

2; 8; 9; 9; 9; 9; 9; 10; 11.

Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2B = 9.

Tứ phân vị thứ nhất là trung vị của mẫu: 2; 8; 9; 9. Do đó Q1B = 8,5.

Tứ phân vị thứ ba là trung vị của mẫu: 9; 9; 10; 11. Do đó Q3B = 9,5.

+ Phương sai mẫu:

SB2=19(22 + 82 + 92 + 92 + 92 + 92 + 92 + 102 + 112) – 8,42 = 6,55.

+ Độ lệch chuẩn: SB = SB2=6,552,6.

b)

+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy A là: ∆QA = 5,5 – 4 = 1,5.

Ta có: Q3A + 1,5∆QA = 5,5 + 1,5 . 1,5 = 7,75 và Q1A – 1,5∆QA = 4 – 1,5 . 1,5 = 1,75.

Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy A là 47.

+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy B là: ∆QB = 9,5 – 8,5 = 1.

Ta có: Q3B + 1,5∆QB = 9,5 + 1,5 . 1 = 11 và Q1B – 1,5∆QB = 8,5 – 1,5 . 1 = 7.

Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy B là 2.

+ Quan sát các số liệu tính được ở câu a), ta thấy

- Số trung bình mức lương hàng tháng của công nhân ở nhà máy A cao hơn nhà máy B.

- Phương sai mẫu và độ lệch chuẩn mẫu số liệu ở nhà máy A cao hơn nhà máy B nên mức lương hằng tháng của công nhân nhà máy A có độ phân tán cao hơn nhà máy B, do đó mức lương của công nhân nhà máy B ổn định hơn nhà máy A.

- Mức lương xuất hiện nhiều nhất trong mẫu A là 4 và 5 triệu đồng, nhà máy B là 9 triệu đồng.

Do đó, ta có thể khẳng định công nhân nhà máy A có mức lương cao hơn (đều và ổn định hơn).


 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay