Câu hỏi:
13/07/2024 5,861
Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:
a)

b)
Giá trị
0
1
2
3
4
Tần suất
0,1
0,2
0,4
0,2
0,1
Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:
a)
b)
Giá trị |
0 |
1 |
2 |
3 |
4 |
Tần suất |
0,1 |
0,2 |
0,4 |
0,2 |
0,1 |
Quảng cáo
Trả lời:
a) Cỡ mẫu n = 10 + 20 + 30 + 20 + 10 = 90.
Số trung bình:
Phương sai mẫu số liệu là:
S2 = [10 . (– 2)2 + 20 . (– 1)2 + 30 . 02 + 20 . 12 + 10 . 22] – 02 = .
Độ lệch chuẩn mẫu số liệu là:
S = .
Sắp xếp các số liệu của mẫu theo thứ tự không giảm, ta được:
– 2; – 2; – 2; – 2 ; – 2; – 2; – 2; – 2; – 2; – 2; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2.
Khoảng biến thiên của mẫu số liệu là: R = 2 – (– 2) = 4.
Vì cỡ mẫu là 90 là số chẵn nên tứ phân vị thứ hai là Q2 = 0.
Tứ phân vị thứ nhất là trung vị của mẫu: – 2; – 2; – 2; – 2 ; – 2; – 2; – 2; – 2; – 2; – 2; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; – 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0. Do đó Q1 = – 1.
Tứ phân vị thứ ba là trung vị của mẫu: 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2. Do đó Q3 = 1.
Khoảng tứ phân vị là ∆Q = 1 – (– 1) = 2.
b) Số trung bình: = 0,1 . 0 + 0,2 . 1 + 0,4 . 2 + 0,2 . 3 + 0,1 . 4 = 2.
Phương sai mẫu số liệu là:
S2 = (0,1 . 02 + 0,2 . 12 + 0,4 . 22 + 0,2 . 32 + 0,1 . 42) – 22 = 1,2.
Độ lệch chuẩn mẫu số liệu là:
S = .
Giả sử cỡ mẫu là 10. Khi đó:
Tần số của giá trị 0 là 0,1 . 10 = 1.
Tần số của giá trị 1 là 0,2 . 10 = 2.
Tần số của giá trị 2 là 0,4 . 10 = 4.
Tần số của giá trị 3 là 0,2 . 10 = 2.
Tần số của giá trị 4 là 0,1 . 1 = 1.
Sắp xếp các số liệu của mẫu theo thứ tự không giảm, ta được:
0; 1; 1; 2; 2; 2; 2; 3; 3; 4.
Khoảng biến thiên của mẫu số liệu là R = 4 – 0 = 4.
Vì cỡ mẫu là số chẵn nên tứ phân vị thứ hai là Q2 = 2.
Tứ phân vị thứ nhất là trung vị của mẫu: 0; 1; 1; 2; 2. Do đó Q1 = 1.
Tứ phân vị thứ ba là trung vị của mẫu: 2; 2; 3; 3; 4. Do đó Q3 = 3.
Khoảng tứ phân vị là: ∆Q = 3 – 1 = 2.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Sắp xếp các số liệu theo thứ tự không giảm, ta được:
3; 3; 9; 9; 10; 10; 12; 12; 37.
+ Vì cỡ mẫu là n = 9 lá số lẻ nên giá trị tứ phân vị thứ hai là Q2 = 10.
+ Tứ phân vị thứ nhất là trung vị của mẫu: 3; 3; 9; 9. Do đó Q1 = 6.
+ Tứ phân vị thứ ba là trung vị của mẫu: 10; 12; 12; 37. Do đó Q3 = 12.
+ Khoảng tứ phân vị của mẫu là: ∆Q = 12 – 6 = 6.
Ta có: Q3 + 1,5∆Q = 12 + 1,5 . 6 = 21 và Q1 – 1,5∆Q = 6 – 1,5 . 6 = – 3.
Do đó mẫu có một giá trị ngoại lệ là 37.
Lời giải
a)
* Nhà máy A:
+ Số trung bình mức lương hàng tháng:
.
+ Giá trị 4 và 5 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy A là 4 và 5.
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
4; 4; 4; 5; 5; 5; 6; 47.
Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2A = 5.
Tứ phân vị thứ nhất là trung vị của mẫu: 4; 4; 4; 5. Do đó Q1A = 4.
Tứ phân vị thứ ba là trung vị của mẫu: 5; 5; 6; 47. Do đó Q3A = 5,5.
+ Phương sai mẫu:
(42 + 52 + 52 + 472 + 52 + 62 + 42 + 42) – 102 = 196.
+ Độ lệch chuẩn: SA = .
* Nhà máy B:
+ Số trung bình mức lương hàng tháng:
.
+ Giá trị 9 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy B là 9.
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
2; 8; 9; 9; 9; 9; 9; 10; 11.
Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2B = 9.
Tứ phân vị thứ nhất là trung vị của mẫu: 2; 8; 9; 9. Do đó Q1B = 8,5.
Tứ phân vị thứ ba là trung vị của mẫu: 9; 9; 10; 11. Do đó Q3B = 9,5.
+ Phương sai mẫu:
(22 + 82 + 92 + 92 + 92 + 92 + 92 + 102 + 112) – 8,42 = 6,55.
+ Độ lệch chuẩn: SB = .
b)
+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy A là: ∆QA = 5,5 – 4 = 1,5.
Ta có: Q3A + 1,5∆QA = 5,5 + 1,5 . 1,5 = 7,75 và Q1A – 1,5∆QA = 4 – 1,5 . 1,5 = 1,75.
Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy A là 47.
+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy B là: ∆QB = 9,5 – 8,5 = 1.
Ta có: Q3B + 1,5∆QB = 9,5 + 1,5 . 1 = 11 và Q1B – 1,5∆QB = 8,5 – 1,5 . 1 = 7.
Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy B là 2.
+ Quan sát các số liệu tính được ở câu a), ta thấy
- Số trung bình mức lương hàng tháng của công nhân ở nhà máy A cao hơn nhà máy B.
- Phương sai mẫu và độ lệch chuẩn mẫu số liệu ở nhà máy A cao hơn nhà máy B nên mức lương hằng tháng của công nhân nhà máy A có độ phân tán cao hơn nhà máy B, do đó mức lương của công nhân nhà máy B ổn định hơn nhà máy A.
- Mức lương xuất hiện nhiều nhất trong mẫu A là 4 và 5 triệu đồng, nhà máy B là 9 triệu đồng.
Do đó, ta có thể khẳng định công nhân nhà máy A có mức lương cao hơn (đều và ổn định hơn).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.