Câu hỏi:

16/06/2022 533 Lưu

Để giá trị lớn nhất của hàm số y=|2xx23m+4|  đạt giá trị nhỏ nhất thì I bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Tập xác định  D=[0;2].

Đặt f(x)=2xx2 xD  , ta có f'(x)=1x2xx2 , .

Ta lại có: f(0)=0 ; f(2)=0 f(1)=1.

Suy ra: P=maxDy=max{|3m4|,|3m5|}|3m4|+|3m5|2|53m+3m4|2=12

Dấu “=” xảy ra  (thỏa mãn) {|3m4|=|3m5|(53m)(3m4)0m=32.

Suy ra giá trị lớn nhất của hàm số là nhỏ nhất khi m=32 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C

Dựa vào phương trình tham số của đường thẳng d ta có 1 vectơ chỉ phương là u=(3;2;5)  .

 

Lời giải

Đáp án B

Vì các điểm (1;0)  ,(0;0)  , (1;0)  thuộc đồ thị hàm số y=f'(x) nên ta có hệ: {1+ab+c=0c=01+a+b+c=0{a=0b=1c=0f'(x)=x3xf''(x)=3x21

Ta có: g(x)=f(f'(x))g'(x)=f'(f'(x)).f''(x)

Xét g'(x)=0f'(f'(x)).f''(x)=0f'(x3x).(3x21)=0

[x3x=0x3x=1x3x=13x21=0[x=±1x=0x=1,325x=1,325x=±33

 

Ta có bảng xét dấu g'(x)  như sau:

Cho hàm số y=f(x) , hàm số f'(x)= x^3+ax^2+bx+c (a,b,c thuộc R)   có đồ thị như hình vẽ. Hàm số g(x)= f(f'(x)) nghịch biến trên khoảng nào dưới đây? (ảnh 2)

 

Dựa vào bảng biến thiên, suy ra BC nghịch biến trên (;2) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP