Câu hỏi:
11/01/2020 31,009Một nhóm gồm 3 học sinh lớp 10, 3 học sinh lớp 11 và 3 học sinh lớp 12 được xếp ngồi vào một hàng có 9 ghế, mỗi học sinh ngồi 1 ghế. Tính xác suất để 3 học sinh lớp 10 không ngồi 3 ghế liền nhau.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn D
Nhóm có tất cả 9 học sinh nên số cách xếp 9 học sinh này ngồi vào một hàng có 9 ghế là 9! = 362880(cách).
Vậy số phần tử không gian mẫu là = 362880
Đặt biến cố A: “ 3 học sinh lớp không ngồi ghế liền nhau”.
Giả sử học sinh lớp 10 ngồi 3 ghế liền nhau. Ta xem 3 học sinh này là một nhóm
+/ Xếp X và 6 bạn còn lại vào ghế có 7! cách xếp.
+/ Ứng với mỗi cách xếp ở trên, có 3! cách xếp các bạn trong nhóm X.
Vậy theo quy tắc nhân ta có số cách xếp là: 7!.3! = 30240 (cách).
Suy ra số cách xếp để học sinh lớp không ngồi cạnh nhau là (cách) .
Vậy xác suất để học sinh lớp 10 không ngồi cạnh nhau là 362880 - 30240 = 332640 (cách)
=> n(A) = 332640
Vậy xác suất để học sinh lớp 10 không ngồi cạnh nhau là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một nhóm có 8 học sinh gồm 4 bạn nam và 4 bạn nữ trong đó có 1 cặp sinh đôi gồm 1 nam và 1 nữ. Xếp ngẫu nhiên 8 học sinh này vào 2 dãy ghế đối diện, mỗi dãy 4 ghế, sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để cặp sinh đôi ngồi cạnh nhau và nam nữ không ngồi đối diện nhau bằng
Câu 2:
Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 4 đỉnh trong các đỉnh của đa giác. Tính xác suất để 4 đỉnh lấy được tạo thành tứ giác có 2 góc ở 2 đỉnh kề chung một cạnh của tứ giác là 2 góc tù.
Câu 3:
Từ các chữ số 1; 2; 3; 4; 5; 6 ta lập các số tự nhiên có 6 chữ số khác nhau. Gọi A là biến cố: “Lập được số mà tổng của ba chữ số thuộc hàng đơn vị, chục, trăm lớn hơn tổng của ba chữ số còn lại là 3 đơn vị”. Xác suất của biến cố A là:
Câu 4:
Gọi là tập hợp các số tự nhiên có 5 chữ số. Lấy ngẫu nhiên hai số từ tập X. Xác suất để nhận được ít nhất một số chia hết cho 4 gần nhất với số nào dưới đây?
Câu 5:
Cho E là tập các số tự nhiên có 6 chữ số đôi một khác nhau lập được từ các số 0; 1; 2; 3; 4; 5; 6. Tính xác suất để chọn ngẫu nhiên từ E được một số có dạng sao cho a + b + c + d = e + f
Câu 6:
Gọi A là tập các số tự nhiên gồm 5 chữ số mà các chữ số đều khác 0. Lấy ngẫu nhiên từ tập A một số. Tính xác suất để lấy được số mà chỉ có đúng 3 chữ số khác nhau.
về câu hỏi!