Câu hỏi:
13/07/2024 1,884Xét hàm số y = S(x) = – 2x2 + 20x (0 < x < 10).
a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số y = – 2x2 + 20x trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị của hàm số y = – 2x2 + 20x có giống với đồ thị của hàm số y = – 2x2 hay không?
b) Quan sát dạng đồ thị của hàm số y = – 2x2 + 20x trong Hình 6.10, tìm tọa độ điểm cao nhất của đồ thị.
c) Thực hiện phép biến đổi
y = – 2x2 + 20x = – 2(x2 – 10x) = – 2(x2 – 2 . 5 . x + 25) + 50 = – 2(x – 5)2 + 50.
Hãy cho biết giá trị lớn nhất của diện tích mảnh đất được rào chắn. Từ đó suy ra lời giải của bài toán ở phần mở đầu.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta biểu diễn các điểm có tọa độ (0; 0), (2; 32), (4; 48), (5; 50), (6; 48), (8; 32), (10; 0) lên mặt phẳng tọa độ và nối lại, ta được dạng của đồ thị hàm số y = – 2x2 + 20x trên khoảng (0; 10).
Dạng của đồ thị hàm số y = – 2x2 + 20x giống với dạng của đồ thị hàm số y = – 2x2.
b) Quan sát đồ thị ta thấy tọa độ điểm cao nhất của đồ thị hàm số y = – 2x2 + 20x là điểm (5; 50).
c) Vì (x – 5)2 ≥ 0 với mọi số thực x
Suy ra – 2(x – 5)2 ≤ 0 với mọi số thực x
Do đó: – 2(x – 5)2 + 50 ≤ 0 + 50 = 50 với mọi số thực x.
Khi đó: y ≤ 50. Vậy giá trị lớn nhất của y là 50 hay diện tích lớn nhất của mảnh đất được rào chắn là 50 m2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xác định parabol y = ax2 + bx + 1, trong mỗi trường hợp sau:
a) Đi qua hai điểm A(1; 0) và B(2; 4);
b) Đi qua điểm A(1; 0) và có trục đối xứng x = 1;
c) Có đỉnh I(1; 2);
d) Đi qua điểm C(– 1; 1) và có tung độ đỉnh bằng – 0,25.
Câu 2:
B. Bài tập
Vẽ các đường parabol sau:
a) y = x2 – 3x + 2;
b) y = – 2x2 + 2x + 3;
c) y = x2 + 2x + 1;
d) y = – x2 + x – 1.
Câu 3:
Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau.
a) Tính diện tích mảnh vườn hình chữ nhật được rào theo chiều rộng x (mét) của nó.
b) Tìm kích thước của mảnh vườn hình chữ nhật có diện tích lớn nhất mà bác Hùng có thể rào được.
Câu 4:
Quỹ đạo của một vật được ném lên từ gốc O (được chọn là điểm ném) trong mặt phẳng tọa độ Oxy là một parabol có phương trình \(y = \frac{{ - 3}}{{1000}}{x^2} + x\), trong đó x (mét) là khoảng cách theo phương ngang trên mặt đất từ vị trí của vật đến gốc O, y (mét) là độ cao của vậy so với mặt đất (H.6.15).
a) Tìm độ cao lớn nhất của vật trong quá trình bay.
b) Tính khoảng cách từ điểm chạm đất sau khi bay của vật đến gốc O. Khoảng cách này gọi là tầm xa của quỹ đạo.
Câu 5:
Hai bạn An và Bình trao đổi với nhau.
An nói: Tớ đọc ở một tài liệu thấy nói rằng cổng Trường Đại học Bách khoa Hà Nội (H.6.14) có dạng một parabol, khoảng cách giữa hai chân cổng là 8 m và chiều cao của cổng tính từ một điểm trên mặt đất cách chân cổng 0,5 m là 2,93 m. Từ đó tớ tính ra được chiều cao của cổng parabol đó là 12 m.
Sau một hồi suy nghĩ, Bình nói: Nếu dữ kiện như bạn nói, thì chiều cao của cổng parabol mà bạn tính ra ở trên là không chính xác.
Dựa vào thông tin mà An đọc được, em hãy tính chiều cao của cổng Trường Đại học Bách khoa Hà Nội để xem kết quả bạn An tính được có chính xác không nhé!
Câu 6:
A. Các câu hỏi trong bài
Bác Việt có một tấm lưới hình chữ nhật dài 20 m. Bác muốn dùng tấm lưới này rào chắn ba mặt áp bên bờ tường của khu vườn nhà mình thành một mảnh đất hình chữ nhật để trồng rau.
Hỏi hai cột góc hàng rào cần phải cắm cách bờ tường bao xa để mảnh đất được rào chắn của bác có diện tích lớn nhất?
về câu hỏi!