Tương tự HĐ2, ta có dạng đồ thị của một số hàm số bậc hai sau.

Từ các đồ thị hàm số trên, hãy nêu nội dung thay vào ô có dấu “?” trong bảng sau cho thích hợp.
Hàm số
Hệ số a
Tính chất của đồ thị
Bề lõm của đồ thị (Quay lên/Quay xuống)
Tọa độ điểm cao nhất/điểm thấp nhất
Trục đối xứng
y = x2 + 2x + 2
1
Quay lên
(– 1; 1)
x = – 1
y = – 2x2 – 3x + 1
?
?
?
?
Tương tự HĐ2, ta có dạng đồ thị của một số hàm số bậc hai sau.

Từ các đồ thị hàm số trên, hãy nêu nội dung thay vào ô có dấu “?” trong bảng sau cho thích hợp.
|
Hàm số |
Hệ số a |
Tính chất của đồ thị |
||
|
Bề lõm của đồ thị (Quay lên/Quay xuống) |
Tọa độ điểm cao nhất/điểm thấp nhất |
Trục đối xứng |
||
|
y = x2 + 2x + 2 |
1 |
Quay lên |
(– 1; 1) |
x = – 1 |
|
y = – 2x2 – 3x + 1 |
? |
? |
? |
? |
Câu hỏi trong đề: Bài tập Bài 16. Hàm số bậc hai có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Quan sát đồ thị hàm số y = – 2x2 – 3x + 1 ta thấy:
+ Hệ số a của hàm số là a = – 2;
+ Bề lõm của đồ thị quay xuống;
+ Đồ thị có điểm cao nhất và điểm này có tọa độ \(\left( { - \frac{3}{4};\frac{{17}}{8}} \right)\);
+ Trục đối xứng \(x = - \frac{3}{4}\).
Vậy ta hoàn thành bảng như sau:
|
Hàm số |
Hệ số a |
Tính chất của đồ thị |
||
|
Bề lõm của đồ thị (Quay lên/Quay xuống) |
Tọa độ điểm cao nhất/điểm thấp nhất |
Trục đối xứng |
||
|
y = x2 + 2x + 2 |
1 |
Quay lên |
(– 1; 1) |
x = – 1 |
|
y = – 2x2 – 3x + 1 |
– 2 |
Quay xuống |
\(\left( { - \frac{3}{4};\frac{{17}}{8}} \right)\) |
\(x = - \frac{3}{4}\) |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Điều kiện: a ≠ 0.
a) Parabol y = ax2 + bx + 1 đi qua điểm A(1; 0) nên ta có tọa độ điểm A thỏa mãn hàm số y = ax2 + bx + 1, do đó: 0 = a . 12 + b . 1 + 1
⇔ a + b + 1 = 0 ⇔ a = – 1 – b (1a).
Parabol y = ax2 + bx + 1 đi qua điểm B(2; 4) nên ta có tọa độ điểm B thỏa mãn hàm số y = ax2 + bx + 1, do đó: 4 = a . 22 + b . 2 + 1
⇔ 4a + 2b = 3 (2a).
Thay (1a) vào (2a) ta được: 4 . (– 1 – b) + 2b = 3 ⇔ – 2b = 7 ⇔ b = \( - \frac{7}{2}\).
Suy ra: a = – 1 \( - \left( { - \frac{7}{2}} \right) = \frac{5}{2}\).
Vậy ta có parabol: \(y = \frac{5}{2}{x^2} - \frac{7}{2}x + 1\).
b) Parabol y = ax2 + bx + 1 đi qua điểm A(1; 0) nên ta có tọa độ điểm A thỏa mãn hàm số y = ax2 + bx + 1, do đó: 0 = a . 12 + b . 1 + 1
⇔ a + b + 1 = 0 ⇔ a = – 1 – b (1b).
Parabol y = ax2 + bx + 1 có trục đối xứng x = 1 nên \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b\) (2b).
Thay (1b) vào (2b) ta có: 2 . (– 1 – b) = – b ⇔ b = – 2.
Suy ra: a = – 1 – (– 2) = 1.
Vậy ta có parabol: y = x2 – 2x + 1.
c) Parabol y = ax2 + bx + 1 có đỉnh I(1; 2).
Do đó: \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b\) và 2 = a . 12 + b . 1 + 1 ⇔ a + b = 1 ⇔ a = 1 – b.
Suy ra: 2 . (1 – b) = – b ⇔ b = 2.
Khi đó: a = 1 – 2 = – 1.
Vậy ta có parabol: y = – x2 + 2x + 1.
d) Parabol y = ax2 + bx + 1 đi qua điểm C(– 1; 1) nên ta có tọa độ điểm C thỏa mãn hàm số y = ax2 + bx + 1, do đó: 1 = a . (– 1)2 + b . (– 1) + 1
⇔ a – b = 0 ⇔ a = b.
Ta có: ∆ = b2 – 4ac = a2 – 4 . a . 1 = a2 – 4a.
Tung độ đỉnh bằng – 0,25 nên \( - \frac{\Delta }{{4a}} = - 0,25 \Leftrightarrow \frac{{{a^2} - 4a}}{{4a}} = 0,25\)
\( \Leftrightarrow \frac{{a\left( {a - 4} \right)}}{{4a}} = \frac{1}{4}\)\( \Leftrightarrow \frac{{a - 4}}{4} = \frac{1}{4}\) (do a ≠ 0)
⇔ a – 4 = 1 ⇔ a = 5.
Do đó: a = b = 5.
Vậy ta có parabol: y = 5x2 + 5x + 1.
Lời giải
Hướng dẫn giải
a) Bác Hùng dùng lưới để rào thành một mảnh vườn hình chữ nhật có chiều rộng x (mét) như sau:

Vì tấm lưới dài 40 m, hay chính là chu vi của mảnh vườn hình chữ nhật ABCD là 40 m.
Suy ra nửa chu vi của mảnh vườn là 40 : 2 = 20 m.
Do đó chiều dài của mảnh vườn rào được theo chiều rộng x (mét) là: 20 – x (m).
Diện tích mảnh vườn hình chữ nhật rào được theo chiều rộng x (mét) là:
S(x) = x . (20 – x) = – x2 + 20x (m2).
b) Để tìm diện tích lớn nhất của mảnh vườn hình chữ nhật bác Hùng có thể rào được, ta tính giá trị lớn nhất của hàm số S(x), đây là hàm số bậc hai.
Tọa độ đỉnh của đồ thị hàm số bậc hai S(x) = – x2 + 20x là I(10; 100).
Do đó giá trị lớn nhất của hàm số S(x) là S =100 tại x = 10.
Suy ra chiều dài khi chiều rộng x = 10 m là 20 – 10 = 10 (m).
Vậy để mảnh vườn rào được có diện tích lớn nhất thì bác Hùng nên rào lưới thép gai thành hình vuông có độ dài cạnh là 10 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



