Câu hỏi:
13/07/2024 7,248Câu hỏi trong đề: Bài tập Bài 16. Hàm số bậc hai có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Quan sát các đồ thị ta thấy:
a) Đồ thị hàm số đi xuống từ trái qua phải trên khoảng \(\left( { - \infty ;\frac{3}{2}} \right)\) nên hàm số y = x2 – 3x + 2 nghịch biến trên khoảng \(\left( { - \infty ;\frac{3}{2}} \right)\).
Đồ thị hàm số đi lên từ trái qua phải trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\) nên hàm số y = x2 – 3x + 2 đồng biến trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\).
b) Đồ thị hàm số đi lên từ trái qua phải trên khoảng \(\left( { - \infty ;\frac{1}{2}} \right)\) nên hàm số y = – 2x2 + 2x + 3 đồng biến trên khoảng \(\left( { - \infty ;\frac{1}{2}} \right)\).
Đồ thị hàm số đi xuống từ trái qua phải trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\) nên hàm số y = – 2x2 + 2x + 3 nghịch biến trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\).
c) Đồ thị hàm số đi xuống từ trái qua phải trên khoảng (– ∞; – 1) nên hàm số y = x2 + 2x + 1 nghịch biến trên khoảng (– ∞; – 1).
Đồ thị hàm số đi lên từ trái qua phải trên khoảng (– 1; +∞) nên hàm số y = x2 + 2x + 1 đồng biến trên khoảng (– 1; +∞).
d) Đồ thị hàm số đi lên từ trái qua phải trên khoảng \(\left( { - \infty ;\frac{1}{2}} \right)\) nên hàm số y = – x2 + x – 1 đồng biến trên khoảng \(\left( { - \infty ;\frac{1}{2}} \right)\).
Đồ thị hàm số đi xuống từ trái qua phải trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\) nên hàm số y = – x2 + x – 1 nghịch biến trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Điều kiện: a ≠ 0.
a) Parabol y = ax2 + bx + 1 đi qua điểm A(1; 0) nên ta có tọa độ điểm A thỏa mãn hàm số y = ax2 + bx + 1, do đó: 0 = a . 12 + b . 1 + 1
⇔ a + b + 1 = 0 ⇔ a = – 1 – b (1a).
Parabol y = ax2 + bx + 1 đi qua điểm B(2; 4) nên ta có tọa độ điểm B thỏa mãn hàm số y = ax2 + bx + 1, do đó: 4 = a . 22 + b . 2 + 1
⇔ 4a + 2b = 3 (2a).
Thay (1a) vào (2a) ta được: 4 . (– 1 – b) + 2b = 3 ⇔ – 2b = 7 ⇔ b = \( - \frac{7}{2}\).
Suy ra: a = – 1 \( - \left( { - \frac{7}{2}} \right) = \frac{5}{2}\).
Vậy ta có parabol: \(y = \frac{5}{2}{x^2} - \frac{7}{2}x + 1\).
b) Parabol y = ax2 + bx + 1 đi qua điểm A(1; 0) nên ta có tọa độ điểm A thỏa mãn hàm số y = ax2 + bx + 1, do đó: 0 = a . 12 + b . 1 + 1
⇔ a + b + 1 = 0 ⇔ a = – 1 – b (1b).
Parabol y = ax2 + bx + 1 có trục đối xứng x = 1 nên \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b\) (2b).
Thay (1b) vào (2b) ta có: 2 . (– 1 – b) = – b ⇔ b = – 2.
Suy ra: a = – 1 – (– 2) = 1.
Vậy ta có parabol: y = x2 – 2x + 1.
c) Parabol y = ax2 + bx + 1 có đỉnh I(1; 2).
Do đó: \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b\) và 2 = a . 12 + b . 1 + 1 ⇔ a + b = 1 ⇔ a = 1 – b.
Suy ra: 2 . (1 – b) = – b ⇔ b = 2.
Khi đó: a = 1 – 2 = – 1.
Vậy ta có parabol: y = – x2 + 2x + 1.
d) Parabol y = ax2 + bx + 1 đi qua điểm C(– 1; 1) nên ta có tọa độ điểm C thỏa mãn hàm số y = ax2 + bx + 1, do đó: 1 = a . (– 1)2 + b . (– 1) + 1
⇔ a – b = 0 ⇔ a = b.
Ta có: ∆ = b2 – 4ac = a2 – 4 . a . 1 = a2 – 4a.
Tung độ đỉnh bằng – 0,25 nên \( - \frac{\Delta }{{4a}} = - 0,25 \Leftrightarrow \frac{{{a^2} - 4a}}{{4a}} = 0,25\)
\( \Leftrightarrow \frac{{a\left( {a - 4} \right)}}{{4a}} = \frac{1}{4}\)\( \Leftrightarrow \frac{{a - 4}}{4} = \frac{1}{4}\) (do a ≠ 0)
⇔ a – 4 = 1 ⇔ a = 5.
Do đó: a = b = 5.
Vậy ta có parabol: y = 5x2 + 5x + 1.
Lời giải
Hướng dẫn giải
a) y = x2 – 3x + 2
Ta có: a = 1 > 0 nên parabol quay bề lõm lên trên.
Parabol y = x2 – 3x + 2 có:
+ Tọa độ đỉnh I\(\left( {\frac{3}{2}; - \frac{1}{4}} \right)\);
+ Trục đối xứng \(x = \frac{3}{2}\);
+ Giao điểm của đồ thị với trục Oy là A(0; 2).
+ Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình x2 – 3x + 2 = 0, tức là x = 2 và x = 1;
+ Điểm đối xứng với điểm A qua trục đối xứng \(x = \frac{3}{2}\) là B(3; 2).
Vẽ đường cong đi qua các điểm trên ta được parabol cần vẽ.
b) y = – 2x2 + 2x + 3
Ta có: a = – 2 < 0 nên parabol quay bề lõm xuống dưới.
Parabol y = – 2x2 + 2x + 3 có:
+ Tọa độ đỉnh I\(\left( {\frac{1}{2};\frac{7}{2}} \right)\);
+ Trục đối xứng \(x = \frac{1}{2}\);
+ Giao điểm của đồ thị với trục Oy là A(0; 3).
+ Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình – 2x2 + 2x + 3 = 0, tức là x = \(\frac{{1 + \sqrt 7 }}{2}\) và x = \(\frac{{1 - \sqrt 7 }}{2}\);
+ Điểm đối xứng với điểm A qua trục đối xứng \(x = \frac{1}{2}\) là B(1; 3).
Vẽ đường cong đi qua các điểm trên ta được parabol cần vẽ.
c) y = x2 + 2x + 1
Ta có: a = 1 > 0 nên parabol quay bề lõm lên trên.
Parabol y = x2 + 2x + 1 có:
+ Tọa độ đỉnh I(– 1; 0)
+ Trục đối xứng x = – 1;
+ Giao điểm của đồ thị với trục Oy là A(0; 1).
+ Điểm đối xứng với điểm A qua trục đối xứng x = – 1 là B(– 2; 1).
+ Lấy điểm C(1; 4) thuộc parabol, điểm đối xứng với C qua trục đối xứng x = – 1 là D(– 3; 4).
Vẽ đường cong đi qua các điểm trên ta được parabol cần vẽ.
d) y = – x2 + x – 1
Ta có: a = – 1 < 0 nên parabol quay bề lõm xuống dưới.
Parabol y = – x2 + x – 1 có:
+ Tọa độ đỉnh I\(\left( {\frac{1}{2}; - \frac{3}{4}} \right)\);
+ Trục đối xứng \(x = \frac{1}{2}\);
+ Giao điểm của đồ thị với trục Oy là A(0; – 1).
+ Điểm đối xứng với điểm A qua trục đối xứng \(x = \frac{1}{2}\) là B(1; – 1).
+ Lấy điểm C(2; – 3) thuộc parabol, điểm đối xứng với điểm C qua trục đối xứng là D(– 1; – 3).
Vẽ đường cong đi qua các điểm trên ta được parabol cần vẽ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)