Câu hỏi:

13/07/2024 5,258

Cho phương trình \(\sqrt {26{x^2} - 63x + 38} = 5x - 6\).

a) Bình phương hai vế và giải phương trình nhận được.

b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình hay không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Bình phương hai vế của phương trình đã cho ta được:

26x2 – 63x + 38 = 25x2 – 60x + 36      (1).

Giải phương trình (1).

Ta có: (1) x2 – 3x + 2 = 0 x = 1 hoặc x = 2.

b) Thử lại

+ Với x = 1 thay vào phương trình đã cho ta được: \(\sqrt {{{26.1}^2} - 63.1 + 38} = 5.1 - 6\)

\( \Leftrightarrow \sqrt 1 = --1\) (vô lí).

+ Với x = 2 thay vào phương trình đã cho ta được: \(\sqrt {{{26.2}^2} - 63.2 + 38} = 5.2 - 6\)

\( \Leftrightarrow \sqrt {16} = 4\) 4 = 4 (luôn đúng)

Vậy giá trị x = 2 thỏa mãn phương trình đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi: 200 m = 0,2 km, 50 m = 0,05 km.

Đặt CH = x (km) (x > 0).

Xét tam giác CHA vuông tại H, theo định lí Pythagore ta có:

CA2 = HA2 + HC2 = (0,05)2 + x2 = 0,0025 + x2

Suy ra CA = 0,0025+x2 hay quãng đường di chuyển của Minh từ vị trí A đến điểm gặp nhau C dài 0,0025+x2 km.

Vận tốc đi bộ của Minh là 5 km/h nên thời gian di chuyển của Minh từ vị trí A đến điểm gặp nhau C là: 0,0025+x25 (giờ).

Xét tam giác HAB vuông tại H, theo định lí Pythagore ta có:

AB2 = HB2 + HA2 HB2 = AB2 – HA2 = (0,2)2 – (0,05)2 = 0,0375

Suy ra HB = 1520.

Ta có: BC + CH = HB BC = HB – CH = 1520-x.

Do đó quãng đường di chuyển của Hùng từ B đến điểm gặp nhau C dài 1520-x km.

Vận tốc đạp xe của Hùng là 15 km/h nên thời gian di chuyển của Hùng từ B đến điểm gặp nhau là: 1520x15=1520x300 (giờ).

Để hai bạn gặp nhau mà không bạn nào phải chờ người kia thì thời gian di chuyển từ vị trí A đến C của Minh phải bằng thời gian di chuyển từ vị trí B đến C của Hùng.

Khi đó ta có phương trình: 0,0025+x25=1520x300    (1).

Giải phương trình (1) ta có:

(1) 600,0025+x2=1520x

Bình phương hai vế của phương trình trên ta được:

3600.(0,0025 + x2) = 15 – 4015x + 400x2

3200x2 + 4015x – 6 = 0

x = 1537160 hoặc x = 15+37160

Thay lần lượt các giá trị này vào phương trình (1) ta thấy cả hai giá trị đều thỏa mãn.

Lại có điều kiện của x là x > 0 nên ta chọn x = 15+37160 0,0254.

Suy ra BC = BH – CH 15200,02540,1682 km = 168,2 m.

Vậy vị trí C thỏa mãn yêu cầu đề bài là điểm cách B khoảng 168,2 m.

Lời giải

Hướng dẫn giải

Đặt AH = x, x > 0.

Xét tam giác AHD vuông tại H, theo định lí Pythagore ta có:

AD2 = AH2 + HD2 HD2 = AD2 – AH2 = 52 – x2 = 25 – x2

Suy ra HD = \(\sqrt {25 - {x^2}} \).

Ta có HC = HD + DC = \(\sqrt {25 - {x^2}} + 8\).

HB = AH + AB = x + 2

Xét tam giác HBC vuông tại H, theo định lí Pythagore ta có:

BC2 = HB2 + HC2

132 = (x + 2)2 + \({\left( {\sqrt {25 - {x^2}} + 8} \right)^2}\)

x2 + 4x + 4 + 25 – x2 + 16\(\sqrt {25 - {x^2}} \)+ 64 – 169 = 0

16\(\sqrt {25 - {x^2}} \) = – 4x + 76

4\(\sqrt {25 - {x^2}} \) = – x + 19

Để tính x, ta cần giải phương trình: 4\(\sqrt {25 - {x^2}} \) = – x + 19 (1).

Bình phương hai vế của phương trình (1) ta được:

16.(25 – x2) = x2 – 38x + 361

17x2 – 38x – 39 = 0  

x = 3 hoặc x = \( - \frac{{13}}{{17}}\).

Thay lần lượt các giá trị trên vào phương trình (1), ta thấy hai giá trị x = 3 và x = \( - \frac{{13}}{{17}}\) đều thỏa mãn.

Vì điều kiện của x là x > 0 nên ta chọn x = 3.

Do đó ta tính được AH = 3.

Suy ra HD = \(\sqrt {25 - {3^2}} = 4\).

HC = 4 + 8 = 12

HB = 3 + 2 = 5

Diện tích tam giác HAD là S1 = \(\frac{1}{2}\)HA . HD = \(\frac{1}{2}\). 3 . 4 = 6.

Diện tích tam giác HBC là S2 = \(\frac{1}{2}\)HB . HC = \(\frac{1}{2}\) . 5 . 12 = 30.

Vậy diện tích tứ giác ABCD là S = S2 – S1 = 30 – 6 = 24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP