Câu hỏi:
28/06/2022 2,319Xác định giá trị của \(m\) để đường tròn \(\left( {{C_1}} \right):{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\) và đường tròn \(\left( {{C_2}} \right):{\mkern 1mu} {\mkern 1mu} {x^2} + {y^2} + 2mx - 2\left( {2m + 3} \right)y - 3m - 5 = 0\) tiếp xúc trong với nhau.
Quảng cáo
Trả lời:
Đáp án C
Phương pháp giải:
Đường tròn \(\left( {{C_1}} \right)\) có tâm \({I_1},\) bán kính \({R_1}\) tiếp xúc trong với đường tròn \(\left( {{C_2}} \right)\) có tâm \({I_2},\) bán kính \({R_2}\) \( \Rightarrow {I_1}{I_2} = \left| {{R_1} - {R_2}} \right|.\)
Giải chi tiết:
Để phương trình \(\left( {{C_2}} \right)\) là phương trình đường tròn thì: \({m^2} + {\left( {2m + 3} \right)^2} + 3m + 5 > 0\)
\( \Leftrightarrow {m^2} + 4{m^2} + 12m + 9 + 3m + 5 > 0\)
\( \Leftrightarrow 5{m^2} + 15m + 14 > 0\)
\( \Leftrightarrow 5\left( {{m^2} + 3m} \right) + 14 > 0\)
\( \Leftrightarrow 5\left( {{m^2} + 2.\frac{3}{2}m + \frac{9}{4}} \right) - \frac{{5.9}}{4} + 14 > 0\)
\( \Leftrightarrow 5{\left( {m + \frac{3}{2}} \right)^2} + \frac{{11}}{4} > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall m\)
\( \Rightarrow \left( {{C_2}} \right)\) luôn là phương trình đường tròn với \(\forall m\).
Ta có: \(\left( {{C_1}} \right)\) có tâm \({I_1}\left( {1;{\mkern 1mu} {\mkern 1mu} 2} \right)\) và bán kính \({R_1} = 3.\)
\(\left( {{C_2}} \right)\) có tâm \({I_2}\left( { - m;{\mkern 1mu} {\mkern 1mu} 2m + 3} \right)\) và bán kính \({R_2} = \sqrt {5{m^2} + 15m + 14} .\)
Đường tròn \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) tiếp xúc trong với nhau \( \Leftrightarrow {I_1}{I_2} = \left| {{R_1} - {R_2}} \right|\)
\( \Leftrightarrow \sqrt {{{\left( {m + 1} \right)}^2} + {{\left( {2m + 1} \right)}^2}} = \left| {3 - \sqrt {5{m^2} + 15m + 14} } \right|\)
\( \Leftrightarrow {m^2} + 2m + 1 + 4{m^2} + 4m + 1 = 9 - 6\sqrt {5{m^2} + 15m + 14} + 5{m^2} + 15m + 14\)
\( \Leftrightarrow 9m + 21 = 6\sqrt {5{m^2} + 15m + 14} \)
\( \Leftrightarrow 3m + 7 = 2\sqrt {5{m^2} + 15m + 14} \)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3m + 7 \ge 0}\\{{{\left( {3m + 7} \right)}^2} = 4\left( {5{m^2} + 15m + 14} \right)}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ge - \frac{7}{3}}\\{9{m^2} + 42m + 49 = 20{m^2} + 60m + 56}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ge - \frac{7}{3}}\\{11{m^2} + 18m + 7 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ge - \frac{7}{3}}\\{\left[ {\begin{array}{*{20}{l}}{m = - \frac{7}{{11}}}\\{m = - 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow m = - 1.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp giải:
Tính \(y'\) và tìm điều kiện để \(y' \ge 0,\forall x \in \mathbb{R}\).
Chú ý: Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\).
Khi đó: \(f\left( x \right) \ge 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a > 0}\\{\Delta \le 0}\end{array}} \right.\)
\(f\left( x \right) \le 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a < 0}\\{\Delta \le 0}\end{array}} \right.\).
Giải chi tiết:
Ta có : \(y' = {x^2} + 4mx + 8\)
Hàm số đồng biến trên \(\left( { - \infty ; + \infty } \right)\)
\( \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R} \Leftrightarrow {x^2} + 4mx + 8 \ge 0,\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1 > 0}\\{\Delta ' = 4{m^2} - 8 \le 0}\end{array}} \right. \Leftrightarrow {m^2} \le 2 \Leftrightarrow - \sqrt 2 \le m \le \sqrt 2 \)
Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1} \right\}\).
Vậy có 3 giá trị thỏa mãn.
Lời giải
Đáp án B
Phương pháp giải:
Gọi x là số mol KAl(SO4)2.12H2O kết tinh.
Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.
Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.
Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% \to x\]
→ mKAl(SO4)2.12H2O.
Giải chi tiết:
Gọi x là số mol KAl(SO4)2.12H2O kết tinh.
Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.
Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.
Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% = \frac{{258x}}{{474x + 200}}.100\% = 5,56\% \]
→ x = 0,048.
→ mKAl(SO4)2.12H2O = 0,048.474 = 22,75 gam.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Lynh Nguyễn
00:41 - 21/03/2025
Mn giải thik hộ e vs ạ