Câu hỏi:

28/06/2022 2,028 Lưu

Tìm \[m\] để phương trình sau có nghiệm: \[\sqrt {3 + x} + \sqrt {6 - x} - \sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} = m\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp giải:

- Đặt \(t = \sqrt {3 + x} + \sqrt {6 - x} \), tìm điều kiện của \(t\).

- Bình phương hai vế, biểu diễn \(\sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} \) theo \(t\).

- Đưa phương trình đã cho về dạng phương trình bậc hai ẩn \(t\), tìm nghiệm \(t\) theo \(m\).

- Giải các bất phương trình \(t\) thỏa mãn điều kiện xác định ở trên.

Giải chi tiết:

ĐKXĐ: \( - 3 \le x \le 6\)

Đặt \(t = \sqrt {3 + x} + \sqrt {6 - x} \)

\( \Rightarrow {t^2} = 3 + x + 6 - x + 2\sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} \)

\( \Rightarrow {t^2} = 9 + 2\sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} \)

\( \Rightarrow \sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} = \frac{{{t^2} - 9}}{2}\)

Do \(\sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} \ge 0 \Leftrightarrow \frac{{{t^2} - 9}}{2} \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t \ge 3}\\{t \le - 3}\end{array}} \right. \Leftrightarrow t \ge 3\) (do \[t \ge 0\]).

Lại có \[\left( {3 + x} \right)\left( {6 - x} \right) = - {x^2} + 3x + 18 \le \frac{{81}}{4}{\mkern 1mu} {\mkern 1mu} \forall x\] nên \[\frac{{{t^2} - 9}}{2} \le \frac{9}{2} \Leftrightarrow t \le 3\sqrt 2 \]\[ \Rightarrow 3 \le t \le 3\sqrt 2 \].

Khi đó phương trình trở thành \(t - \frac{{{t^2} - 9}}{2} = m \Leftrightarrow {t^2} - 2t + 2m - 9 = 0{\mkern 1mu} {\mkern 1mu} \left( * \right)\)

Để phương trình ban đầu có nghiệm thì phương trình (*) phải có nghiệm thỏa mãn (1).

Ta có \(\Delta ' = 1 - 2m + 9 = 10 - 2m \ge 0 \Leftrightarrow m \le 5\)

Khi đó phương trình (*) có nghiệm \(\left[ {\begin{array}{*{20}{l}}{{t_1} = 1 + \sqrt {10 - 2m} }\\{{t_2} = 1 - \sqrt {10 - 2m} }\end{array}} \right.\).

\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{3 \le 1 + \sqrt {10 - 2m} \le 3\sqrt 2 }\\{3 \le 1 - \sqrt {10 - 2m} \le 3\sqrt 2 }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2 \le \sqrt {10 - 2m} \le 3\sqrt 2 - 1}\\{1 - 3\sqrt 2 \le \sqrt {10 - 2m} \le - 2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {VN} \right)}\end{array}} \right.\)

\( \Leftrightarrow 4 \le 10 - 2m \le 19 - 6\sqrt 2 \)

\( \Leftrightarrow 6\sqrt 2 - 9 \le 2m \le 6\)

\( \Leftrightarrow 3\sqrt 2 - \frac{9}{2} \le m \le 3\)

Kết hợp điều kiện ta có \(3\sqrt 2 - \frac{9}{2} \le m \le 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp giải:

Tính \(y'\) và tìm điều kiện để \(y' \ge 0,\forall x \in \mathbb{R}\).

Chú ý: Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\).

Khi đó: \(f\left( x \right) \ge 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a > 0}\\{\Delta \le 0}\end{array}} \right.\)

\(f\left( x \right) \le 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a < 0}\\{\Delta \le 0}\end{array}} \right.\).

Giải chi tiết:

Ta có : \(y' = {x^2} + 4mx + 8\)

Hàm số đồng biến trên \(\left( { - \infty ; + \infty } \right)\)

\( \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R} \Leftrightarrow {x^2} + 4mx + 8 \ge 0,\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1 > 0}\\{\Delta ' = 4{m^2} - 8 \le 0}\end{array}} \right. \Leftrightarrow {m^2} \le 2 \Leftrightarrow - \sqrt 2 \le m \le \sqrt 2 \)

\(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1} \right\}\).

Vậy có 3 giá trị thỏa mãn.

Lời giải

Đáp án B

Phương pháp giải:

Gọi x là số mol KAl(SO4)2.12H2O kết tinh.

Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.

Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.

Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% \to x\]

→ mKAl(SO4)2.12H2O.

Giải chi tiết:

Gọi x là số mol KAl(SO4)2.12H2O kết tinh.

Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.

Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.

Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% = \frac{{258x}}{{474x + 200}}.100\% = 5,56\% \]

→ x = 0,048.

→ mKAl(SO4)2.12H2O = 0,048.474 = 22,75 gam.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP