Một nhóm học sinh có 8 học sinh nữ và 4 học sinh nam. Xếp ngẫu nhiên nhóm học sinh này thành một hàng dọc. Tính xác suất sao cho không có hai bạn nam nào đứng cạnh nhau.
Một nhóm học sinh có 8 học sinh nữ và 4 học sinh nam. Xếp ngẫu nhiên nhóm học sinh này thành một hàng dọc. Tính xác suất sao cho không có hai bạn nam nào đứng cạnh nhau.
Quảng cáo
Trả lời:
Đáp án C
Phương pháp giải:
Sử dụng nguyên tắc vách ngăn.
Giải chi tiết:
Số cách xếp 12 học sinh thành 1 hàng dọc là \(12!\) cách \( \Rightarrow \) Không gian mẫu \(n\left( \Omega \right) = 12!\)
Gọi A là biến cố: “không có hai bạn nam nào đứng cạnh nhau”
Xếp 8 bạn nữ thành hàng ngang có \(8!\) cách, khi đó có 9 vách ngăn giữa 8 bạn nữ này.
Xếp 4 bạn nam vào 4 trong 9 vách ngăn trên có \(A_9^4\) cách.
Khi đó \(n\left( A \right) = 8!.A_9^4\).
Vậy xác suất cần tìm là \(P\left( A \right) = \frac{{8!.A_9^4}}{{12!}} = \frac{{14}}{{55}}\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp giải:
Tính \(y'\) và tìm điều kiện để \(y' \ge 0,\forall x \in \mathbb{R}\).
Chú ý: Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\).
Khi đó: \(f\left( x \right) \ge 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a > 0}\\{\Delta \le 0}\end{array}} \right.\)
\(f\left( x \right) \le 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a < 0}\\{\Delta \le 0}\end{array}} \right.\).
Giải chi tiết:
Ta có : \(y' = {x^2} + 4mx + 8\)
Hàm số đồng biến trên \(\left( { - \infty ; + \infty } \right)\)
\( \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R} \Leftrightarrow {x^2} + 4mx + 8 \ge 0,\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1 > 0}\\{\Delta ' = 4{m^2} - 8 \le 0}\end{array}} \right. \Leftrightarrow {m^2} \le 2 \Leftrightarrow - \sqrt 2 \le m \le \sqrt 2 \)
Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1} \right\}\).
Vậy có 3 giá trị thỏa mãn.
Lời giải
Đáp án B
Phương pháp giải:
Gọi x là số mol KAl(SO4)2.12H2O kết tinh.
Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.
Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.
Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% \to x\]
→ mKAl(SO4)2.12H2O.
Giải chi tiết:
Gọi x là số mol KAl(SO4)2.12H2O kết tinh.
Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.
Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.
Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% = \frac{{258x}}{{474x + 200}}.100\% = 5,56\% \]
→ x = 0,048.
→ mKAl(SO4)2.12H2O = 0,048.474 = 22,75 gam.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.