Câu hỏi:
28/06/2022 146Cho hình lăng trụ \(ABC.A'B'C'\)có tam giác \(ABC\) vuông tại \(A\), \(AB = a\), \(AC = a\sqrt 2 \), \(AA' = 2a\). Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {A'B'C'} \right)\) trùng với trung điểm \(H\) của đoạn \(B'C'\) (tham khảo hình vẽ dưới đây). Khoảng cách giữa hai đường thẳng \(AA'\) và \(BC'\) bằng:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án: \(\frac{{a\sqrt {15} }}{5}\)
Phương pháp giải:
- Chứng minh \(d\left( {AA';BC'} \right) = d\left( {A;\left( {BCC'B'} \right)} \right)\), sử dụng định lí khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường thẳng này đến mặt phẳng song song và chứa đường thẳng kia.
- Trong \(\left( {ABC} \right)\) kẻ \(AK \bot BC{\mkern 1mu} {\mkern 1mu} \left( {K \in BC} \right)\), trong \(\left( {AHK} \right)\) kẻ \(AI \bot HK{\mkern 1mu} {\mkern 1mu} \left( {I \in HK} \right)\), chứng minh \(AI \bot \left( {BCC'B'} \right)\).
- Sử dụng định lí Pytago và hệ thức lượng trong tam giác vuông tính khoảng cách.
Giải chi tiết:
Ta có \(AA'//BB' \Rightarrow AA'//\left( {BCC'B'} \right) \supset BC'\).
\( \Rightarrow d\left( {AA';BC'} \right) = d\left( {AA';\left( {BCC'B'} \right)} \right) = d\left( {A;\left( {BCC'B'} \right)} \right)\)
Trong \(\left( {ABC} \right)\) kẻ \(AK \bot BC{\mkern 1mu} {\mkern 1mu} \left( {K \in BC} \right)\), trong \(\left( {AHK} \right)\) kẻ \[AI \bot HK{\mkern 1mu} {\mkern 1mu} \left( {I \in HK} \right)\] ta có:
\[\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{BC \bot AK}\\{BC \bot AH}\end{array}} \right. \Rightarrow BC \bot \left( {AHK} \right) \Rightarrow BC \botAI}\\{\left\{ {\begin{array}{*{20}{l}}{AI \bot HK}\\{AI \bot BC}\end{array}} \right. \Rightarrow AI \bot \left( {BCC'B'} \right)}\end{array} \Rightarrow d\left( {A;\left( {BCC'B'} \right)} \right) = AI = d\left( {AA';BC'} \right)\]
Áp dụng hệ thức lượng trong tam giác vuông \[ABC\] ta có: \[AK = \frac{{AB.AC}}{{\sqrt {A{B^2} + A{C^2}} }} = \frac{{a.a\sqrt 3 }}{{\sqrt {{a^2} + 3{a^2}} }} = \frac{{a\sqrt 3 }}{2}\]
Tam giác \[A'B'C'\] có \[B'C' = {\rm{ }}\sqrt {A'{{B'}^2} + A'{{C'}^2}} = 2a \Rightarrow A'H = \frac{1}{2}B'C' = a\]
\[ \Rightarrow AH = {\rm{ }}\sqrt {A{{A'}^2} + A'{H^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 {\rm{ }}\]
Áp dụng hệ thức lượng trong tam giác vuông \(AHK\) ta có:
\(AI = \frac{{AH.AK}}{{\sqrt {A{H^2} + A{K^2}} }} = \frac{{a\sqrt 3 .\frac{{a\sqrt 3 }}{2}}}{{\sqrt {3{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {15} }}{5}\)
Vậy \(d\left( {AA';BC'} \right) = \frac{{a\sqrt {15} }}{5}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{1}{3}{x^3} + 2m{x^2} + 8x - 2\) đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)?
Câu 2:
Cho biết nồng độ dung dịch bão hòa KAl(SO4)2 ở 200C là 5,56%. Lấy m gam dung dịch bão hòa KAl(SO4)2.12H2O ở 20oC để đun nóng cho bay hơi 200 gam nước, phần còn lại làm lạnh đến 200C. Tính khối lượng tinh thể KAl(SO4)2.12H2O kết tinh?
Câu 5:
Khi kí hợp đồng lao động dài hạn với các kĩ sư được tuyển dụng, công ti liên doanh A đề xuất 2 phương án trả lương để người lao động tự lựa chọn, cụ thể:
+ Phương án 1: Người lao động nhận được 360 triệu đồng cho năm làm việc đầu tiên, và kể từ năm thứ 2 trở đi, mức lương sẽ tăng thêm 30 triệu đồng mỗi năm.
+ Phương án 2: Người lao động nhận được 70 triệu đồng cho quý làm việc đầu tiên, và kể từ quý thứ 2 trở đi, mức lương sẽ tăng thêm 5 triệu đồng mỗi quý.
Nếu em là người kí hợp đồng lao động em sẽ chọn phương án nào?
Câu 6:
Nhận thức mới của Nguyễn Tất Thành trong giai đoạn 1911- 1917 so với các nhà yêu nước tiền bối là về
Câu 7:
Chọn một từ mà nghĩa của nó KHÔNG cùng nhóm với các từ còn lại.
về câu hỏi!