Cho bảng số liệu
Mật độ dân số một số vùng nước ta, năm 2006.
(Đơn vị: người/km)
Vùng
Mật độ dân số
Đồng bằng sông Hồng
1225
Đông Bắc
148
Tây Bắc
69
Bắc Trung Bộ
207
Duyên hải Nam Trung Bộ
200
Tây Nguyên
89
Đông Nam Bộ
511
Đồng bằng sông Cửu Long
429
(Nguồn số liệu theo Bài 16 - SGK trang 69 - NXB giáo dục Việt Nam)
Để thể hiện mật độ dân số một số vùng nước ta năm 2006 theo bảng số liệu, biểu đồ nào sau đây là thích hợp nhất ?
Cho bảng số liệu
Mật độ dân số một số vùng nước ta, năm 2006.
(Đơn vị: người/km)
Vùng |
Mật độ dân số |
Đồng bằng sông Hồng |
1225 |
Đông Bắc |
148 |
Tây Bắc |
69 |
Bắc Trung Bộ |
207 |
Duyên hải Nam Trung Bộ |
200 |
Tây Nguyên |
89 |
Đông Nam Bộ |
511 |
Đồng bằng sông Cửu Long |
429 |
(Nguồn số liệu theo Bài 16 - SGK trang 69 - NXB giáo dục Việt Nam)
Để thể hiện mật độ dân số một số vùng nước ta năm 2006 theo bảng số liệu, biểu đồ nào sau đây là thích hợp nhất ?
Quảng cáo
Trả lời:
Đáp án B
Phương pháp giải:
Kĩ năng nhận diện biểu đồ
Giải chi tiết:
Từ khóa “mật độ dân số”, số năm 1 năm. 7 vùng
=> Miền, tròn, đường loại.
=> Chọn cột.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Phương pháp giải:
Tính \(y'\) và tìm điều kiện để \(y' \ge 0,\forall x \in \mathbb{R}\).
Chú ý: Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\).
Khi đó: \(f\left( x \right) \ge 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a > 0}\\{\Delta \le 0}\end{array}} \right.\)
\(f\left( x \right) \le 0,\forall x \in R \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a < 0}\\{\Delta \le 0}\end{array}} \right.\).
Giải chi tiết:
Ta có : \(y' = {x^2} + 4mx + 8\)
Hàm số đồng biến trên \(\left( { - \infty ; + \infty } \right)\)
\( \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R} \Leftrightarrow {x^2} + 4mx + 8 \ge 0,\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1 > 0}\\{\Delta ' = 4{m^2} - 8 \le 0}\end{array}} \right. \Leftrightarrow {m^2} \le 2 \Leftrightarrow - \sqrt 2 \le m \le \sqrt 2 \)
Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1} \right\}\).
Vậy có 3 giá trị thỏa mãn.
Lời giải
Đáp án B
Phương pháp giải:
Gọi x là số mol KAl(SO4)2.12H2O kết tinh.
Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.
Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.
Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% \to x\]
→ mKAl(SO4)2.12H2O.
Giải chi tiết:
Gọi x là số mol KAl(SO4)2.12H2O kết tinh.
Vì nhiệt độ không đổi nên độ tan cũng không đổi do đó nồng độ dung dịch bão hòa không đổi.
Giả sử không thoát hơi nước thì 200 gam nước sẽ hòa tan tối đa x mol KAl(SO4)2.12H2O được dung dịch bão hòa ở 20oC.
Phương trình nồng độ dung dịch bão hòa: \[C\% = \frac{{{m_{ct}}}}{{{m_{{\rm{dd}}}}}}.100\% = \frac{{258x}}{{474x + 200}}.100\% = 5,56\% \]
→ x = 0,048.
→ mKAl(SO4)2.12H2O = 0,048.474 = 22,75 gam.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.