Câu hỏi:
01/07/2022 190Số giá trị nguyên của \(x\) thỏa mãn bất phương trình \(\frac{{{x^2}}}{{\sqrt {x - 1} }} < \frac{{2x + 8}}{{\sqrt {x - 1} }}\) là
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp giải:
+ Tìm TXĐ
+ Áp dụng \(\frac{{P\left( x \right)}}{{Q\left( x \right)}} < 0\) mà \(Q\left( x \right) > 0\) với mọi \(x \in D\) nên \(P\left( x \right) < 0\).
Giải chi tiết:
TXĐ: \(D = \left( {1;{\mkern 1mu} {\mkern 1mu} + \infty } \right)\)
\(\frac{{{x^2}}}{{\sqrt {x - 1} }} < \frac{{2x + 8}}{{\sqrt {x - 1} }}\)
\( \Leftrightarrow \frac{{{x^2} - 2x - 8}}{{\sqrt {x - 1} }} < 0\)
\( \Leftrightarrow {x^2} - 2x - 8 < 0\) (vì \(\sqrt {x - 1} > 0\) với mọi \(x \in D\))
\( \Leftrightarrow - 2 < x < 4\)
Mà \(x \in \mathbb{Z},{\mkern 1mu} {\mkern 1mu} x > 1 \Rightarrow x \in \left\{ {2;{\mkern 1mu} {\mkern 1mu} 3} \right\}\).
Vậy có 2 giá trị nguyên của \(x\) thỏa mãn điều kiện đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ông \(A\) dự định sử dụng hết \(6,5{m^3}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Câu 3:
Xét các số thực \(x,y\) thỏa mãn \({2^{{x^2} + {y^2} + 1}} \le \left( {{x^2} + {y^2} - 2x + 2} \right){4^x}\). Giá trị lớn nhất của biểu thức \(P = \frac{{8x + 4}}{{2x - y + 1}}\) gần nhất với số nào dưới đây?
Câu 5:
Cho hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\). Số giá trị nguyên của \(m\) để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) là:
Câu 7:
Nêu ý nghĩa của hai câu thơ:
"Ta hay chê rằng cuộc đời méo mó
Sao ta không tròn ngay tự trong tâm”
về câu hỏi!