Câu hỏi:

01/07/2022 1,909

Cho hàm số \(f\left( x \right)\) có đồ thị như hình vẽ bên. Bất phương trình \(f\left( {{e^x}} \right) < m\left( {3{e^x} + 2019} \right)\) có nghiệm \(x \in \left( {0;1} \right)\) khi và chỉ khi

Cho hàm số f(x) có đồ thị như hình vẽ bên. Bất phương trình f(e^x) < m(3e^x  2019) (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp giải:

Đặt \({e^x} = t\left( {t > 0} \right)\). Ta đưa bất phương trình đã cho thánh bất phương trình ẩn t, từ đó lập luận để có phương trình ẩn t có nghiệm thuộc \(\left( {1;e} \right).\)

Ta chú ý rằng hàm số \(y = f\left( x \right)\)\(y = f\left( t \right)\) có tính chất giống nhau nên từ đồ thị hàm số đã cho ta suy ra tính chất hàm \(f\left( t \right).\)

Sử dụng phương pháp hàm số để tìm m sao cho bất phương trình có nghiệm.

Bất phương trình \(m > f\left( X \right)\) có nghiệm trên \(\left( {a;b} \right)\) khi \(m > \mathop {\min }\limits_{\left[ {a;b} \right]} {\mkern 1mu} f\left( X \right)\).

Giải chi tiết:

Xét bất phương trình \(f\left( {{e^x}} \right) < m\left( {3{e^x} + 2019} \right)\). (*)

Đặt \({e^x} = t\left( {t > 0} \right)\) với: \(x \in \left( {0;1} \right) \Rightarrow t \in \left( {{e^0};{e^1}} \right) \Rightarrow t \in \left( {1;e} \right)\).

Ta được bất phương trình \(f\left( t \right) < m\left( {3t + 2019} \right) \Leftrightarrow m > \frac{{f\left( t \right)}}{{3t + 2019}}\) (vì \(3t + 2019 > 0\) với \(t \in \left( {1;e} \right)\))

Để bất phương trình (*) có nghiệm \(x \in \left( {0;1} \right)\) thì bất phương trình (1) có nghiệm \(t \in \left( {1;e} \right)\).

Ta xét hàm \(g\left( t \right) = \frac{{f\left( t \right)}}{{3t + 2019}}\) trên \(\left( {1;e} \right)\).

Ta có \(g'\left( t \right) = \frac{{f'\left( t \right)\left( {3t + 2019} \right) - 3f\left( t \right)}}{{{{\left( {3t + 2019} \right)}^2}}}\).

Nhận xét rằng đồ thị hàm số \(y = f\left( t \right)\) có tính chất giống với đồ thị hàm số \(y = f\left( x \right)\) nên xét trên khoảng \(\left( {1;e} \right)\) ta thấy rằng \(f\left( t \right) < 0\) và đồ thị hàm số đi lên từ trái qua phải hay hàm số đồng biến trên \(\left( {1;e} \right)\) nên \(f'\left( t \right) > 0\).

Từ đó \(g'\left( t \right) = \frac{{f'\left( t \right)\left( {3t + 2019} \right) - 3f\left( t \right)}}{{{{\left( {3t + 2019} \right)}^2}}} > 0\) với \(t \in \left( {1;e} \right)\) hay hàm số \[g\left( t \right)\] đồng biến trên \[\left( {1;e} \right)\].

Cho hàm số f(x) có đồ thị như hình vẽ bên. Bất phương trình f(e^x) < m(3e^x  2019) (ảnh 2)

Từ BBT ta thấy để bất phương trình \[m > \frac{{f\left( t \right)}}{{3t + 2019}}\] với \(t \in \left( {1;e} \right)\) thì \(m > \mathop {\min }\limits_{\left[ {1;e} \right]} g\left( t \right) \Leftrightarrow m > - \frac{2}{{1011}}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ông \(A\) dự định sử dụng hết \(6,5{m^3}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

Xem đáp án » 13/07/2024 34,972

Câu 2:

Phương thức biểu đạt chính trong đoạn trích là gì?

Xem đáp án » 01/07/2022 21,031

Câu 3:

Diện tích hình phẳng giới hạn bởi \(y = {x^2} - 4x + 3,\) \(x = 0,{\mkern 1mu} {\mkern 1mu} x = 3\) và trục hoành bằng:

Xem đáp án » 01/07/2022 9,968

Câu 4:

Tây Nguyên hiện nay phát triển mạnh

Xem đáp án » 01/07/2022 7,972

Câu 5:

Xét các số thực \(x,y\) thỏa mãn \({2^{{x^2} + {y^2} + 1}} \le \left( {{x^2} + {y^2} - 2x + 2} \right){4^x}\). Giá trị lớn nhất của biểu thức \(P = \frac{{8x + 4}}{{2x - y + 1}}\) gần nhất với số nào dưới đây?

Xem đáp án » 13/07/2024 7,536

Câu 6:

Cho hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\). Số giá trị nguyên của \(m\) để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) là:

Xem đáp án » 01/07/2022 7,123

Câu 7:

Phát biểu nào sau đây đúng?

Xem đáp án » 01/07/2022 6,800