Câu hỏi:

01/07/2022 399 Lưu

Trong mặt phẳng \(Oxy\), tập hợp điểm biểu diễn số phức \(z\) thỏa mãn \(\left| {z - i} \right| = \left| {2 - 3i - z} \right|\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp giải:

+ Mô đun của số phức \(z = a + bi\)\(\left| {a + bi} \right| = \sqrt {{a^2} + {b^2}} \)

+ Biến đổi giả thiết để đưa về phương trình đường thẳng.

Giải chi tiết:

Đặt \(z = x + yi\left( {x,y \in \mathbb{R}} \right)\)

Ta có: \(\left| {z - i} \right| = \left| {2 - 3i - z} \right|\)

\( \Leftrightarrow \left| {x + yi - i} \right| = \left| {2 - 3i - \left( {x + yi} \right)} \right|\)

\( \Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| = \left| {2 - x - \left( {y + 3} \right)i} \right|\)

\( \Leftrightarrow \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} = \sqrt {{{\left( {2 - x} \right)}^2} + {{\left( {y + 3} \right)}^2}} \)

\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = {\left( {2 - x} \right)^2} + {\left( {y + 3} \right)^2}\)

\( \Leftrightarrow {x^2} + {y^2} - 2y + 1 = 4 - 4x + {x^2} + {y^2} + 6y + 9\)

\( \Leftrightarrow 4x - 8y - 12 = 0\)

\( \Leftrightarrow x - 2y - 3 = 0\)

Vậy tập hợp biểu diễn số phức \(z\) là đường thẳng \(x - 2y - 3 = 0.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(1,50{\mkern 1mu} {m^3}\)

Phương pháp giải:

- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)

- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).

- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).

Giải chi tiết:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 1)

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).

Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)

\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)

Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)

Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)

Bảng biến thiên:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 2)

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).

Câu 2

Lời giải

Đáp án A

Phương pháp giải:

Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).

Giải chi tiết:

Phương thức biểu đạt tự sự.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP