Câu hỏi:
01/07/2022 309Trong mặt phẳng \(Oxy\), tập hợp điểm biểu diễn số phức \(z\) thỏa mãn \(\left| {z - i} \right| = \left| {2 - 3i - z} \right|\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp giải:
+ Mô đun của số phức \(z = a + bi\) là \(\left| {a + bi} \right| = \sqrt {{a^2} + {b^2}} \)
+ Biến đổi giả thiết để đưa về phương trình đường thẳng.
Giải chi tiết:
Đặt \(z = x + yi\left( {x,y \in \mathbb{R}} \right)\)
Ta có: \(\left| {z - i} \right| = \left| {2 - 3i - z} \right|\)
\( \Leftrightarrow \left| {x + yi - i} \right| = \left| {2 - 3i - \left( {x + yi} \right)} \right|\)
\( \Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| = \left| {2 - x - \left( {y + 3} \right)i} \right|\)
\( \Leftrightarrow \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} = \sqrt {{{\left( {2 - x} \right)}^2} + {{\left( {y + 3} \right)}^2}} \)
\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = {\left( {2 - x} \right)^2} + {\left( {y + 3} \right)^2}\)
\( \Leftrightarrow {x^2} + {y^2} - 2y + 1 = 4 - 4x + {x^2} + {y^2} + 6y + 9\)
\( \Leftrightarrow 4x - 8y - 12 = 0\)
\( \Leftrightarrow x - 2y - 3 = 0\)
Vậy tập hợp biểu diễn số phức \(z\) là đường thẳng \(x - 2y - 3 = 0.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ông \(A\) dự định sử dụng hết \(6,5{m^3}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Câu 3:
Diện tích hình phẳng giới hạn bởi \(y = {x^2} - 4x + 3,\) \(x = 0,{\mkern 1mu} {\mkern 1mu} x = 3\) và trục hoành bằng:
Câu 4:
Xét các số thực \(x,y\) thỏa mãn \({2^{{x^2} + {y^2} + 1}} \le \left( {{x^2} + {y^2} - 2x + 2} \right){4^x}\). Giá trị lớn nhất của biểu thức \(P = \frac{{8x + 4}}{{2x - y + 1}}\) gần nhất với số nào dưới đây?
Câu 7:
Cho hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\). Số giá trị nguyên của \(m\) để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) là:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
về câu hỏi!