Câu hỏi:
01/07/2022 380Cho khối lăng trụ tam giác đều \[ABC.A'B'C'\] có cạnh đáy là \[2a\] và khoảng cách từ điểm \[A\] đến mặt phẳng \[\left( {A'BC} \right)\] bằng \[a\]. Tính thể tích của khối lăng trụ \[ABC.A'B'C'\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp giải:
- Xác định góc từ điểm \[A\] đến \(\left( {A'BC} \right)\)
- Sử dụng hệ thức lượng trong tam giác vuông tính \(A'A\)
- Tính thể tích \({V_{ABC.A'B'C'}} = A'A.{S_{\Delta ABC}}\)
Giải chi tiết:
Gọi \(M\) là trung điểm của \[BC\] ta có \[\left\{ {\begin{array}{*{20}{l}}{BC \bot AM}\\{BC \bot AA'}\end{array}} \right. \Rightarrow BC \bot \left( {A'BC} \right)\]
Trong \[\left( {A'BC} \right)\] kẻ \[AH \bot A'M{\mkern 1mu} {\mkern 1mu} \left( {H \in A'M} \right)\] ta có: \[\left\{ {\begin{array}{*{20}{l}}{AH \bot BC}\\{AH \bot A'M}\end{array}} \right. \Rightarrow AH \bot \left( {A'BC} \right)\]
\[ \Rightarrow d\left( {A;\left( {A'BC} \right)} \right) = AH = a\]
Vì tam giác \(ABC\) đều cạnh \(2a\) nên \(AM = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \) và \({S_{\Delta ABC}} = {\left( {2a} \right)^2}\frac{{\sqrt 3 }}{4} = {a^2}\sqrt 3 \)
Áp dụng hệ thức lượng trong tam giác vuông \(AA'M\) ta có:
\(\frac{1}{{A{H^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{A{M^2}}} \Rightarrow \frac{1}{{{a^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{3{a^2}}}\)
\( \Rightarrow \frac{1}{{A'{A^2}}} = \frac{2}{{3{a^2}}} \Rightarrow A'A = \frac{{a\sqrt 6 }}{2}\)
Vậy \({V_{ABC.A'B'C'}} = A'A.{S_{\Delta ABC}} = \frac{{a\sqrt 6 }}{2}.{a^2}\sqrt 3 = \frac{{3{a^3}\sqrt 2 }}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ông \(A\) dự định sử dụng hết \(6,5{m^3}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Câu 3:
Xét các số thực \(x,y\) thỏa mãn \({2^{{x^2} + {y^2} + 1}} \le \left( {{x^2} + {y^2} - 2x + 2} \right){4^x}\). Giá trị lớn nhất của biểu thức \(P = \frac{{8x + 4}}{{2x - y + 1}}\) gần nhất với số nào dưới đây?
Câu 5:
Cho hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\). Số giá trị nguyên của \(m\) để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) là:
Câu 7:
Nêu ý nghĩa của hai câu thơ:
"Ta hay chê rằng cuộc đời méo mó
Sao ta không tròn ngay tự trong tâm”
về câu hỏi!