Trong không gian \(Oxyz,\) cho hai điểm \(A\left( {1;2;3} \right),{\mkern 1mu} {\mkern 1mu} B\left( {5;6;1} \right).\) Biết \(M\left( {a;b;0} \right)\) sao cho tổng \(MA + MB\) nhỏ nhất. Tính độ dài đoạn \(OM.\)
Quảng cáo
Trả lời:
Phương pháp giải:
- Nhận xét: \(A,{\mkern 1mu} {\mkern 1mu} B\) nằm cùng phía đối với \(\left( {Oxy} \right)\), điểm \(M\left( {a;b;0} \right) \in \left( {Oxy} \right)\)
- Gọi \(A'\) là điểm đối xứng với \(A\) qua , xác định tọa độ điểm \(A\).
- Sử dụng tính chất đối xứng và BĐT tam giác: \(MA + MB = MA' + MB \ge A'B\)
- Xác định dấu “=” xảy ra, tìm tọa độ điểm \(M\) và tính \(OM\).
Giải chi tiết:
Dễ thấy hai điểm \(A,{\mkern 1mu} {\mkern 1mu} B\) nằm cùng phía đối với \(\left( {Oxy} \right)\), điểm \(M\left( {a;b;0} \right) \in \left( {Oxy} \right)\)
Gọi \(A'\) là điểm đối xứng với \(A\) qua \(\left( {Oxy} \right)\)\( \Rightarrow A'\left( {1;2; - 3} \right)\)
Theo tính chất đối xứng ta có: \(MA = MA'\)
Do đó \(MA + MB = MA' + MB \ge A'B\) (Bất đẳng thức tam giác).
Dấu “=” xảy ra \( \Rightarrow M \in A'B\). Hay \(M,{\mkern 1mu} {\mkern 1mu} A',{\mkern 1mu} {\mkern 1mu} B\) thẳng hàng \( \Rightarrow \overrightarrow {A'M} ;{\mkern 1mu} {\mkern 1mu} \overrightarrow {A'B} \) cùng phương.
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {A'M} = \left( {a - 1;b - 2;3} \right)}\\{\overrightarrow {A'B} = \left( {4;4;4} \right)}\end{array}} \right.\)\( \Rightarrow \frac{{a - 1}}{4} = \frac{{b - 2}}{4} = \frac{3}{4}\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 4}\\{b = 5}\end{array}} \right.\)
\( \Rightarrow M\left( {4;5;0} \right)\). Vậy \(OM = \sqrt {{4^2} + {5^2} + {0^2}} = \sqrt {41} \).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(1,50{\mkern 1mu} {m^3}\)
Phương pháp giải:
- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)
- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).
- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).
Giải chi tiết:

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).
Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)
\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)
Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)
Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)
Bảng biến thiên:

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).
Lời giải
Đáp án A
Phương pháp giải:
Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).
Giải chi tiết:
Phương thức biểu đạt tự sự.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.