Câu hỏi:

01/07/2022 498 Lưu

Gọi \(S\) là tập hợp tất cả các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tính tổng các phần tử của \(S\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp giải:

Số điểm cực trị của hàm số \(y = \left| {f\left( x \right)} \right|\) với \(f\left( x \right)\) là hàm đa thức = số điểm cực trị của hàm số \(y = f\left( x \right)\) + số giao điểm (không tính điểm tiếp xúc) của đồ thị hàm số \(f\left( x \right)\) và trục hoành.

Giải chi tiết:

Xét hàm số \(f\left( x \right) = 3{x^4} - 8{x^3} - 6{x^2} + 24x - m\)

Đồ thị hàm số \(f\left( x \right)\) có nhiều nhất 3 điểm cực trị và cắt trục hoành tại nhiều nhất 4 điểm.

Do đó để đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) có 7 điểm cực trị thì đồ thị hàm số \(f\left( x \right)\) phải cắt trục hoành tại 4 điểm phân biệt và có 3 điểm cực trị.

\( \Rightarrow \) đồ thị hàm số \(f\left( x \right)\) phải cắt trục hoành tại 4 điểm phân biệt (vì khi đó chắc chắn hàm số \(y = f\left( x \right)\) sẽ có 3 điểm cực trị) \( \Rightarrow \) Phương trình \(3{x^4} - 8{x^3} - 6{x^2} + 24x - m = 0 \Leftrightarrow 3{x^4} - 8{x^3} - 6{x^2} + 24x = m{\mkern 1mu} {\mkern 1mu} \left( * \right)\) phải có 4 nghiệm phân biệt.

Xét hàm số \(g\left( x \right) = 3{x^4} - 8{x^3} - 6{x^2} + 24x\) ta có \(g'\left( x \right) = 12{x^3} - 24{x^2} - 12x + 24 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1}\\{x = 1}\\{x = 2}\end{array}} \right.\)

BBT:

Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số  (ảnh 1)

Dựa vào BBT ta thấy phương trình (*) có 4 nghiệm phân biệt \( \Leftrightarrow 8 < m < 13\)

\(m \in \mathbb{Z} \Rightarrow m \in S = \left\{ {9;10;11;12} \right\}\)

Vậy tổng tất cả các phần tử của \(S\)\(9 + 10 + 11 + 12 = 42\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(1,50{\mkern 1mu} {m^3}\)

Phương pháp giải:

- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)

- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).

- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).

Giải chi tiết:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 1)

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).

Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)

\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)

Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)

Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)

Bảng biến thiên:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 2)

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).

Câu 2

Lời giải

Đáp án A

Phương pháp giải:

Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).

Giải chi tiết:

Phương thức biểu đạt tự sự.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP