Câu hỏi:

01/07/2022 440

Gọi \(S\) là tập hợp tất cả các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tính tổng các phần tử của \(S\).

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp giải:

Số điểm cực trị của hàm số \(y = \left| {f\left( x \right)} \right|\) với \(f\left( x \right)\) là hàm đa thức = số điểm cực trị của hàm số \(y = f\left( x \right)\) + số giao điểm (không tính điểm tiếp xúc) của đồ thị hàm số \(f\left( x \right)\) và trục hoành.

Giải chi tiết:

Xét hàm số \(f\left( x \right) = 3{x^4} - 8{x^3} - 6{x^2} + 24x - m\)

Đồ thị hàm số \(f\left( x \right)\) có nhiều nhất 3 điểm cực trị và cắt trục hoành tại nhiều nhất 4 điểm.

Do đó để đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) có 7 điểm cực trị thì đồ thị hàm số \(f\left( x \right)\) phải cắt trục hoành tại 4 điểm phân biệt và có 3 điểm cực trị.

\( \Rightarrow \) đồ thị hàm số \(f\left( x \right)\) phải cắt trục hoành tại 4 điểm phân biệt (vì khi đó chắc chắn hàm số \(y = f\left( x \right)\) sẽ có 3 điểm cực trị) \( \Rightarrow \) Phương trình \(3{x^4} - 8{x^3} - 6{x^2} + 24x - m = 0 \Leftrightarrow 3{x^4} - 8{x^3} - 6{x^2} + 24x = m{\mkern 1mu} {\mkern 1mu} \left( * \right)\) phải có 4 nghiệm phân biệt.

Xét hàm số \(g\left( x \right) = 3{x^4} - 8{x^3} - 6{x^2} + 24x\) ta có \(g'\left( x \right) = 12{x^3} - 24{x^2} - 12x + 24 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1}\\{x = 1}\\{x = 2}\end{array}} \right.\)

BBT:

Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số  (ảnh 1)

Dựa vào BBT ta thấy phương trình (*) có 4 nghiệm phân biệt \( \Leftrightarrow 8 < m < 13\)

\(m \in \mathbb{Z} \Rightarrow m \in S = \left\{ {9;10;11;12} \right\}\)

Vậy tổng tất cả các phần tử của \(S\)\(9 + 10 + 11 + 12 = 42\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ông \(A\) dự định sử dụng hết \(6,5{m^3}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

Xem đáp án » 13/07/2024 35,019

Câu 2:

Phương thức biểu đạt chính trong đoạn trích là gì?

Xem đáp án » 01/07/2022 21,050

Câu 3:

Diện tích hình phẳng giới hạn bởi \(y = {x^2} - 4x + 3,\) \(x = 0,{\mkern 1mu} {\mkern 1mu} x = 3\) và trục hoành bằng:

Xem đáp án » 01/07/2022 9,972

Câu 4:

Tây Nguyên hiện nay phát triển mạnh

Xem đáp án » 01/07/2022 8,417

Câu 5:

Xét các số thực \(x,y\) thỏa mãn \({2^{{x^2} + {y^2} + 1}} \le \left( {{x^2} + {y^2} - 2x + 2} \right){4^x}\). Giá trị lớn nhất của biểu thức \(P = \frac{{8x + 4}}{{2x - y + 1}}\) gần nhất với số nào dưới đây?

Xem đáp án » 13/07/2024 7,540

Câu 6:

Cho hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\). Số giá trị nguyên của \(m\) để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) là:

Xem đáp án » 01/07/2022 7,133

Câu 7:

Phát biểu nào sau đây đúng?

Xem đáp án » 01/07/2022 6,806