Câu hỏi:

01/07/2022 395

Có bao nhiêu giá trị \(m\) nguyên bé hơn \( - 6\) để phương trình \(\sqrt {2{x^2} - 2x - m} = x + 2\) có nghiệm?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp giải:

Bình phương hai vế để giải phương trình vô tỉ, kết hợp bảng biến thiên để biện luận số nghiệm.

Giải chi tiết:

\(\sqrt {2{x^2} - 2x - m} = x + 2 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x + 2 \ge 0}\\{2{x^2} - 2x - m = {{\left( {x + 2} \right)}^2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ge - 2}\\{2{x^2} - 2x - m = {x^2} + 4x + 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ge - 2}\\{{x^2} - 6x - 4 = m}\end{array}} \right..\)

Số nghiệm của phương trình đã cho là số giao điểm của đồ thị hàm số \(y = {x^2} - 6x - 4\) và đường thẳng \(y = m\) với \(x \ge - 2.\)

Xét hàm số \(y = {x^2} - 6x - 4\) ta có BBT:

Có bao nhiêu giá trị m nguyên bé hơn -6 để phường trình căn bậc hai (2x^2 (ảnh 1)

Từ bảng biến thiên suy ra để phương trình có nghiệm \(x \ge - 2\) thì \(m \ge - 13.\)

Lại có \(\left\{ {\begin{array}{*{20}{l}}{m \in \mathbb{Z}}\\{m < - 6}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{m \in \mathbb{Z}}\\{ - 13 \le m < - 6}\end{array}} \right. \Rightarrow m \in \left\{ { - 13;{\mkern 1mu} - 12;.....; - 7} \right\} \Rightarrow \) có 7 giá trị \(m\) thỏa mãn bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ông \(A\) dự định sử dụng hết \(6,5{m^3}\) kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

Xem đáp án » 13/07/2024 33,255

Câu 2:

Phương thức biểu đạt chính trong đoạn trích là gì?

Xem đáp án » 01/07/2022 17,315

Câu 3:

Xét các số thực \(x,y\) thỏa mãn \({2^{{x^2} + {y^2} + 1}} \le \left( {{x^2} + {y^2} - 2x + 2} \right){4^x}\). Giá trị lớn nhất của biểu thức \(P = \frac{{8x + 4}}{{2x - y + 1}}\) gần nhất với số nào dưới đây?

Xem đáp án » 13/07/2024 6,982

Câu 4:

Tây Nguyên hiện nay phát triển mạnh

Xem đáp án » 01/07/2022 6,812

Câu 5:

Phát biểu nào sau đây đúng?

Xem đáp án » 01/07/2022 6,359

Câu 6:

Cho hàm số \(y = \frac{{{x^3}}}{3} - \left( {m - 1} \right){x^2} + 3\left( {m - 1} \right)x + 1\). Số giá trị nguyên của \(m\) để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) là:

Xem đáp án » 01/07/2022 6,242

Câu 7:

Diện tích hình phẳng giới hạn bởi \(y = {x^2} - 4x + 3,\) \(x = 0,{\mkern 1mu} {\mkern 1mu} x = 3\) và trục hoành bằng:

Xem đáp án » 01/07/2022 5,895

Bình luận


Bình luận