Câu hỏi:

01/07/2022 519 Lưu

Hai con lắc đơn giống hệt nhau mà các vật nhỏ mang điện tích như nhau, được treo ở một nơi trên mặt đất. Trong mỗi vùng không gian chứa mỗi con lắc có một điện trường đều. Hai điện trường này có cùng cường độ nhưng các đường sức hợp với nhau một góc \(\alpha \). Giữ hai con lắc ở vị trí các dây treo có phương thẳng đứng rồi thả nhẹ thì chúng dao động điều hòa trong cùng một mặt phẳng với biên độ góc \({8^o}\) và có chu kì tương ứng là \[{T_1}\]\[{T_2}\]. Nếu \[{T_2} > {T_1}\] thì \[\alpha \] không thể nhận giá trị nào sau đây?

A. \[{30^o}\]
B. \[{90^o}\]
C. \[{160^o}\]

D. \({170^o}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp giải:

Lực điện: \(F = \left| q \right|E = ma\)

Gia tốc trọng trường hiệu dụng: \[\overrightarrow {{g_1}} = \overrightarrow g + \overrightarrow {{a_1}} \]

Công thức định lí hàm sin: \[\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\]

Giải chi tiết:

Lực điện tác dụng lên các con lắc là: \[{F_1} = {F_2} = \left| q \right|E \Rightarrow {a_1} = {a_2}\]

Ta có hình vẽ:

Hai con lắc đơn giống hệt nhau mà các vật nhỏ mang điện tích như nhau,  (ảnh 1)

Áp dụng định lí hàm sin cho các tam giác, ta có: \[\left\{ {\begin{array}{*{20}{l}}{\frac{{{a_1}}}{{\sin {8^0}}} = \frac{g}{{\sin \left( {{{172}^0} - {\alpha _1}} \right)}} = \frac{{{g_1}}}{{\sin {\alpha _1}}}}\\{\frac{{{a_2}}}{{\sin {8^0}}} = \frac{g}{{\sin \left( {{{172}^0} - {\alpha _2}} \right)}} = \frac{{{g_2}}}{{\sin {\alpha _2}}}}\end{array}} \right.\]

Lại có: \[{a_1} = {a_2} \Rightarrow \frac{{{a_1}}}{{\sin {8^0}}} = \frac{{{a_2}}}{{\sin {8^0}}}\]

\[\frac{g}{{\sin \left( {{{172}^0} - {\alpha _1}} \right)}} = \frac{g}{{\sin \left( {{{172}^0} - {\alpha _2}} \right)}}\]

\[ \Rightarrow \sin \left( {{{172}^0} - {\alpha _1}} \right) = \sin \left( {{{172}^0} - {\alpha _2}} \right)\]

\[ \Rightarrow {172^0} - {\alpha _1} = {180^0} - \left( {{{172}^0} - {\alpha _2}} \right)\]

\[ \Rightarrow {\alpha _1} + {\alpha _2} = {164^0}\]

Xét chu kì của con lắc:

\[{T_1} = {T_2} \Rightarrow 2\pi \sqrt {\frac{l}{{{g_1}}}} = 2\pi \sqrt {\frac{l}{{{g_2}}}} \Rightarrow {g_1} = {g_2}\]

Mặt khác: \[\frac{{{g_1}}}{{\sin {\alpha _1}}} = \frac{{{g_2}}}{{\sin {\alpha _2}}} \Rightarrow \sin {\alpha _1} = \sin {\alpha _2} \Rightarrow {\alpha _1} + {\alpha _2} = {180^0}\]

→ với mọi giá trị \({\alpha _1},{\mkern 1mu} {\mkern 1mu} {\alpha _2}\) thỏa mãn \({\alpha _1} + {\alpha _2}{\mkern 1mu} = {164^0}\), luôn có \({T_2} > {T_1}\)

Góc hợp bởi hai vecto cường độ điện trường:

\(\alpha = {\alpha _1} - {\alpha _2} \Rightarrow {\alpha _1} = \alpha + {\alpha _2}\)

\( \Rightarrow \alpha + 2{\alpha _2} = {164^0} \Rightarrow {\alpha _2} = \frac{{{{164}^0} - \alpha }}{2}\)

Ta có: \({\alpha _2} \ge {0^0} \Rightarrow \frac{{{{164}^0} - \alpha }}{2} \ge {0^0} \Rightarrow \alpha \le {164^0}\)

Vậy \(\alpha \) không thể nhận giá trị \({170^0}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(1,50{\mkern 1mu} {m^3}\)

Phương pháp giải:

- Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y\)

- Tìm mối liên hệ \(x,y\) dựa vào dữ kiện diện tích \(6,5{m^2}\).

- Lập hàm số thể tích theo ẩn \(x\) và xét hàm tìm \({V_{\max }}\).

Giải chi tiết:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 1)

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,2x,y{\mkern 1mu} {\mkern 1mu} \left( {x,y > 0} \right)\).

Diện tích phần lắp kính là: \(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 6,5\)

\( \Leftrightarrow xy = \frac{{6,5 - 2{x^2}}}{6} > 0 \Rightarrow x < \sqrt {\frac{{6,5}}{2}} = \frac{{\sqrt {13} }}{2}.\)

Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{6,5 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 13x}}{6}\) với \(0 < x < \frac{{\sqrt {13} }}{2}\)

Ta có: \(V' = \frac{{ - 12{x^2} + 13}}{6},V' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{\sqrt {39} }}{6}}\\{x = - \frac{{\sqrt {39} }}{6}\left( L \right)}\end{array}} \right.\)

Bảng biến thiên:

Ông A dự định sử dụng hết 6,5m^3 kính để làm một bể cá bằng kính (ảnh 2)

Vậy \({V_{\max }} = \frac{{13\sqrt {39} }}{{54}} \approx 1,50{\mkern 1mu} {m^3}\).

Câu 2

A. Phương thức biểu đạt tự sự

B. Phương thức biểu đạt nghị luận             

C. Phương thức biểu đạt miêu tả
D. Phương thức biểu đạt biểu cảm

Lời giải

Đáp án A

Phương pháp giải:

Căn cứ 6 phương thức biểu đạt đã học (miêu tả, tự sự, biểu cảm, nghị luận, thuyết minh, hành chính – công vụ).

Giải chi tiết:

Phương thức biểu đạt tự sự.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. sản xuất lúa gạo, nuôi trồng thủy sản

B. khai thác gỗ tròn, trồng cây dược liệu     

C. thủy điện, cây công nghiệp nhiệt đới

D. khai thác các khoáng sản, sản xuất ô tô

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Amilozơ có cấu trúc mạch phân nhánh.

B. Tơ tằm thuộc loại tơ thiên nhiên.

C. Tinh bột là một loại polime bán tổng hợp.

D. Tơ visco thuộc loại tơ tổng hợp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP