Câu hỏi:

17/12/2019 28,243 Lưu

Cho góc α thỏa mãn: 3cosα+ 2sinα = 2  và sinα < 0. Tính sinα

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Ta có 3cosα+ 2sinα = 2  hay (3cosα+ 2sinα = 2 )= 4

Tương đương: 9 cos2 α + 12 cosα .sin α + 4sin2α = 4

Hay 5cos2α +  12 cosα .sin α = 0

Từ đó: cosα= 0 hoặc 5cosα + 12 sinα = 0

+ Nếu cosα = 0 thì sinα =1: loại ( vì sinα < 0).

+ 5cosα + 12 sinα = 0 

ta có hệ phương trình 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C.

Ta luôn có: sin2 α + cos2 α = 1 nên cos2α =  1- sin2 α = 16/25 

900 <  α  < 1800.  Nên cos α = -4/5 ; tanα = -3/4 ; cotα = -4/3.

Lời giải

Chọn A.

Ta có 

Khi đó 

Do đó, 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP