Câu hỏi:
05/07/2022 266Cho hình chóp đều \[SABC\] có \[AB = 2a\], khoảng cách từ A đến \[mp\left( {SBC} \right)\] là \[\frac{{3a}}{2}\]. Tính thể tích hình chóp \[SABC\].
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án D

Gọi M là trung điểm của BC và G là tâm đường tròn ngoại tiếp \(\Delta ABC\).
Do S.ABC là hình chóp đều nên \(SG \bot \left( {ABC} \right)\) và G là trọng tâm \(\Delta ABC\).
Ta có: \(\left\{ \begin{array}{l}AM \bot BC\\SG \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right)\) hay \(\left( {SBC} \right) \bot \left( {SAM} \right)\) theo giao tuyến SM.
Trong \(\left( {SAM} \right)\), kẻ \(AH \bot {\rm{S}}M,H \in SM \Rightarrow AH \bot \left( {SBC} \right)\).
Vậy \(d\left( {A,(SBC)} \right) = AH = \frac{{3{\rm{a}}}}{2}\).
Vì \(\Delta ABC\) là tam giác đều cạnh 2a nên \(AM = \frac{{2{\rm{a}}\sqrt 3 }}{2} = a\sqrt 3 \) và \({S_{\Delta ABC}} = \frac{{{{\left( {2{\rm{a}}} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \).
Đặt \(SG = x\). Ta có: \(GM = \frac{1}{3}AM = \frac{1}{3}.a\sqrt 3 = \frac{{a\sqrt 3 }}{3}\).
Xét \(\Delta SGM\) vuông tại G ta có: \(SM = \sqrt {S{G^2} + G{M^2}} = \sqrt {{x^2} + {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} \)
Xét \(\Delta SAM\) ta có: \({S_{\Delta SAM}} = \frac{1}{2}SG.AM = \frac{1}{2}AH.SM \Rightarrow x.a\sqrt 3 = \frac{{3{\rm{a}}}}{2}\sqrt {{x^2} + \frac{{{a^2}}}{3}} \)
\( \Leftrightarrow 4{{\rm{x}}^2} = 3\left( {{x^2} + \frac{{{a^2}}}{3}} \right) \Leftrightarrow x = a\). Do đó: \(SG = a\).
Thể tích khối chóp S.ABC là: \({V_{S.ABC}} = \frac{1}{3}SG.{S_{\Delta ABC}} = \frac{1}{3}.a.{a^2}\sqrt 3 = \frac{{{a^3}\sqrt 3 }}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Ta có \(\int {f\left( x \right)d{\rm{x}}} = \int {{{\left( {3 - 5{\rm{x}}} \right)}^4}d{\rm{x}}} = \frac{1}{5}\int {{{\left( {5{\rm{x}} - 3} \right)}^4}d\left( {5{\rm{x}} - 3} \right)} = \frac{{\left( {5{\rm{x}} - {3^5}} \right)}}{{25}} + C\).
Lời giải
Đáp án B
Dựa vào đồ thị suy ra \(y = a\left( {x + 2} \right){\left( {x - 1} \right)^2}\).
Do đồ thị hàm số đi qua điểm \(\left( {0;2} \right) \Rightarrow 2 = 2{\rm{a}} \Rightarrow a = 1\)
Khi đó \(S = \int\limits_{ - 2}^1 {\left( {x + 2} \right){{\left( {x - 1} \right)}^2}d{\rm{x}}} = \frac{{27}}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.