Câu hỏi:

05/07/2022 330

Cho hình lăng trụ \[ABC.A'B'C'\] có đáy ABC là tam giác đều cạnh a, \[AA' = \frac{{3a}}{2}\]. Biết rằng hình chiếu vuông góc của \[A'\] lên \[\left( {ABC} \right)\] là trung điểm BC. Tính thể tích V của khối lăng trụ đó.

Cho hình lăng trụ \[ABC.A'B'C'\] có đáy ABC là tam giác đều cạnh a (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có: \(AH = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2} \Rightarrow A'H = \sqrt {A'{A^2} - A{H^2}} = \sqrt {{{\left( {\frac{{3a}}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} = \frac{{a\sqrt 6 }}{2}\)

\( \Rightarrow V = A'H.{S_{ABC}} = \frac{{a\sqrt 6 }}{2}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{3{a^3}\sqrt 2 }}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Ta có \(\int {f\left( x \right)d{\rm{x}}} = \int {{{\left( {3 - 5{\rm{x}}} \right)}^4}d{\rm{x}}} = \frac{1}{5}\int {{{\left( {5{\rm{x}} - 3} \right)}^4}d\left( {5{\rm{x}} - 3} \right)} = \frac{{\left( {5{\rm{x}} - {3^5}} \right)}}{{25}} + C\).

Câu 2

Lời giải

Đáp án B

Dựa vào đồ thị suy ra \(y = a\left( {x + 2} \right){\left( {x - 1} \right)^2}\).

Do đồ thị hàm số đi qua điểm \(\left( {0;2} \right) \Rightarrow 2 = 2{\rm{a}} \Rightarrow a = 1\)

Khi đó \(S = \int\limits_{ - 2}^1 {\left( {x + 2} \right){{\left( {x - 1} \right)}^2}d{\rm{x}}} = \frac{{27}}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP