Câu hỏi:

05/07/2022 208

Cho hàm số \[y = f\left( x \right)\] xác định trên \[\mathbb{R}\] và hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \[y = f\left( {{x^2} - 3} \right)\]

Cho hàm số  y=f(x) xác định trên R và hàm số y=f'(x)   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Chọn \(f'\left( x \right) = \left( {x + 2} \right){\left( {x - 1} \right)^2}\) khi đó \({\left[ {f\left( {{x^2} - 3} \right)} \right]^\prime } = 2{\rm{x}}.f'\left( {{x^2} - 3} \right)\)

\( = 2{\rm{x}}\left( {{x^2} - 3 + 2} \right){\left( {{x^2} - 3 - 1} \right)^2} = 2{\rm{x}}\left( {{x^2} - 1} \right){\left( {{x^2} - 4} \right)^2}\).

Khi đó \({\left[ {f\left( {{x^2} - 3} \right)} \right]^\prime }\) đổi dấu khi đi qua các điểm \(x = 0,{\rm{ }}x = \pm 1\) nên hàm số có 3 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Ta có \(\int {f\left( x \right)d{\rm{x}}} = \int {{{\left( {3 - 5{\rm{x}}} \right)}^4}d{\rm{x}}} = \frac{1}{5}\int {{{\left( {5{\rm{x}} - 3} \right)}^4}d\left( {5{\rm{x}} - 3} \right)} = \frac{{\left( {5{\rm{x}} - {3^5}} \right)}}{{25}} + C\).

Câu 2

Lời giải

Đáp án B

Dựa vào đồ thị suy ra \(y = a\left( {x + 2} \right){\left( {x - 1} \right)^2}\).

Do đồ thị hàm số đi qua điểm \(\left( {0;2} \right) \Rightarrow 2 = 2{\rm{a}} \Rightarrow a = 1\)

Khi đó \(S = \int\limits_{ - 2}^1 {\left( {x + 2} \right){{\left( {x - 1} \right)}^2}d{\rm{x}}} = \frac{{27}}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP