Câu hỏi:

05/07/2022 354

Cho hàm số f(x) liên tục trên \[\mathbb{R}\]\[f\left( 3 \right) = 21\], \[\int\limits_0^3 {f\left( x \right){\rm{d}}x} = 9\]. Tính tích phân \[I = \int\limits_0^1 {x.f'\left( {3x} \right){\rm{d}}x} \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Đặt \(\left\{ \begin{array}{l}u = x\\dv = f'\left( {3{\rm{x}}} \right)d{\rm{x}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = d{\rm{x}}\\v = \frac{1}{3}f\left( {3{\rm{x}}} \right)\end{array} \right.\).

Khi đó \(I = \int\limits_0^1 {xf'\left( {3{\rm{x}}} \right)d{\rm{x}}} = \left. {\frac{1}{3}xf\left( {3{\rm{x}}} \right)} \right|_0^1 - \frac{1}{3}\int\limits_0^1 {f\left( {3{\rm{x}}} \right)d{\rm{x}}} \mathop = \limits^{t = 3{\rm{x}}} \frac{1}{3}f\left( 3 \right) - \frac{1}{9}\int\limits_0^3 {f\left( t \right)dt} = 7 - 1 = 6\).

Suy ra \(I = 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Ta có \(\int {f\left( x \right)d{\rm{x}}} = \int {{{\left( {3 - 5{\rm{x}}} \right)}^4}d{\rm{x}}} = \frac{1}{5}\int {{{\left( {5{\rm{x}} - 3} \right)}^4}d\left( {5{\rm{x}} - 3} \right)} = \frac{{\left( {5{\rm{x}} - {3^5}} \right)}}{{25}} + C\).

Câu 2

Lời giải

Đáp án B

Dựa vào đồ thị suy ra \(y = a\left( {x + 2} \right){\left( {x - 1} \right)^2}\).

Do đồ thị hàm số đi qua điểm \(\left( {0;2} \right) \Rightarrow 2 = 2{\rm{a}} \Rightarrow a = 1\)

Khi đó \(S = \int\limits_{ - 2}^1 {\left( {x + 2} \right){{\left( {x - 1} \right)}^2}d{\rm{x}}} = \frac{{27}}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP